The dual roles of SIRT1: a systematic review.
DOI:
https://doi.org/10.58445/rars.1605Keywords:
SIRT1, oncogene, tumor suppessor gene, signaling pathway, cancerAbstract
- Background: Sirtuins belong to the class III histone deacetylases (HDACs) and are NAD+-dependent enzymes. They are responsible for various cellular processes and pathways, namely cell survival, development, inflammation, aging, metabolic control, and apoptosis. SIRT1, specifically, has been reported to act as a tumor suppressor gene and an oncogene in cancer progression.
- Objective: This paper aims to understand the driving factor(s) that contribute to SIRT1’s oncogenic and tumor-suppressing activities.
- Method: A systematic literature search is performed utilizing the PRISMA guidelines. This search is conducted separately for SIRT1 as an oncogene, using keywords “SIRT1,” “cancer,” and “oncogene,” and SIRT1 as a tumor suppressor gene, with the keywords “SIRT1,” “cancer,” and “tumor suppressor.” After screening and assessing eligibility with various criteria, 44 papers are included in this review.
- Results: Out of the 44 papers, 30 supported the oncogenic role of SIRT1. Most of these papers showed that the natural upregulation of SIRT1 in cancer cell lines has a positive correlation with tumorigenesis. Additionally, this upregulation can cooperate with other family proteins, such as FOXO or signaling pathways, like the NF-κB signaling pathway, stimulating the aforementioned transformation. 14 out of the 44 papers suggested a tumor suppressor function for SIRT1. Specifically, its anti-cancer properties seem to be enhanced in the presence of an activator; in this cellular context, SIRT1 frequently induces cell apoptosis. Alongside the induction of autophagy, SIRT1 can also inhibit tumorigenesis. In general, SIRT1 often displays contradictory roles in common solid tumors such as colorectal, breast, and liver. In liquid tumors such as leukemia, SIRT1 seems to be an oncogene.
- Conclusion: In this review, it was found that overexpression of SIRT1 has an oncogenic effect on cancer cell lines unless activated via an activator. Therefore, SIRT1 activators are prospective agents in targeting SIRT1 as a potential therapeutic treatment against cancer.
References
Wang, X. W., Jiang, Y. H., Ye, W., Shao, C. F., Xie, J. J., & Li, X. (2023). SIRT1 promotes the progression and chemoresistance of colorectal cancer through the p53/miR-101/KPNA3 axis. Cancer Biology & Therapy, 24(1). https://doi.org/10.1080/15384047.2023.2235770
Dilmac, S., Kuscu, N., Caner, A., Yildirim, S., Yoldas, B., Farooqi, A. A., & Tanriover, G. (2022). SIRT1/FOXO Signaling Pathway in Breast Cancer Progression and Metastasis. International journal of molecular sciences, 23(18), 10227. https://doi.org/10.3390/ijms231810227
Liu, X., Liu, J., Xiao, W., Zeng, Q., Bo, H., Zhu, Y., Gong, L., He, D., Xing, X., Li, R., Zhou, M., Xiong, W., Zhou, Y., Zhou, J., Li, X., Guo, F., Xu, C., Chen, X., Wang, X., Wang, F., … Cao, K. (2020). SIRT1 Regulates N6 -Methyladenosine RNA Modification in Hepatocarcinogenesis by Inducing RANBP2-Dependent FTO SUMOylation. Hepatology (Baltimore, Md.), 72(6), 2029–2050. https://doi.org/10.1002/hep.31222
Zhang W, Liao K, Liu D. MiRNA-12129 Suppresses Cell Proliferation and Block Cell Cycle Progression by Targeting SIRT1 in GASTRIC Cancer. Technology in Cancer Research & Treatment. 2020;19. https://doi.org/10.1177/1533033820928144
HELVACI, NAZLI; SARAÇOĞLU, HATİCE; YILDIZ, OĞUZ GALİP; and KILIÇ, ESER (2021) "The study of sirtuins in breast cancer patients before and after radiotherapy," Turkish Journal of Medical Sciences: Vol. 51: No. 3, Article 57. https://doi.org/10.3906/sag-2012-195
Jia, X., Liu, H., Ren, X. et al. Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation. Oncogene 41, 4474–4484 (2022). https://doi.org/10.1038/s41388-022-02447-y
Jiang, W., Hou, L., Wei, J., Du, Y., Zhao, Y., Deng, X., & Lin, X. (2020). Hsa-miR-217 Inhibits the Proliferation, Migration, and Invasion in Non-small Cell Lung Cancer Cells Via Targeting SIRT1 and P53/KAI1 Signaling. Balkan medical journal, 37(1), 208–214. https://doi.org/10.4274/balkanmedj.galenos.2020.2019.9.91
Islam, S., Abiko, Y., Uehara, O., & Chiba, I. (2019). Sirtuin 1 and oral cancer. Oncology letters, 17(1), 729–738. https://doi.org/10.3892/ol.2018.9722
Wang, F., Li, Z., Zhou, J. et al. SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression. J Exp Clin Cancer Res 40, 259 (2021). https://doi.org/10.1186/s13046-021-02071-w
Yao, Jy., Xu, S., Sun, Yn. et al. Novel CDK9 inhibitor oroxylin A promotes wild-type P53 stability and prevents hepatocellular carcinoma progression by disrupting both MDM2 and SIRT1 signaling. Acta Pharmacol Sin 43, 1033–1045 (2022). https://doi.org/10.1038/s41401-021-00708-2
Brandl, L., Zhang, Y., Kirstein, N., Sendelhofert, A., Boos, S. L., Jung, P., Greten, F., Rad, R., & Menssen, A. (2019). Targeting c-MYC through Interference with NAMPT and SIRT1 and Their Association to Oncogenic Drivers in Murine Serrated Intestinal Tumorigenesis. Neoplasia (New York, N.Y.), 21(10), 974–988. https://doi.org/10.1016/j.neo.2019.07.009
Yarahmadi, S., Abdolvahabi, Z., Hesari, Z., Tavakoli-Yaraki, M., Yousefi, Z., Seiri, P., Hosseinkhani, S., & Nourbakhsh, M. (2019). Inhibition of sirtuin 1 deacetylase by miR-211-5p provides a mechanism for the induction of cell death in breast cancer cells. Gene, 711, 143939. https://doi.org/10.1016/j.gene.2019.06.029
Lo Cigno, I., Calati, F., Girone, C. et al. SIRT1 is an actionable target to restore p53 function in HPV-associated cancer therapy. Br J Cancer 129, 1863–1874 (2023). https://doi.org/10.1038/s41416-023-02465-x
Xu, J., Wang, X., Wang, W., Zhang, L., & Huang, P. (2021). Candidate oncogene circularNOP10 mediates gastric cancer progression by regulating miR-204/SIRT1 pathway. Journal of gastrointestinal oncology, 12(4), 1428–1443. https://doi.org/10.21037/jgo-21-422
Teasley, H. E., Beesley, A., Kim, T. H., Risinger, J., Young, S. L., Jeong, J. W., Schammel, D. P., Lessey, B. A., Elder, J. W., & Puls, L. (2020). Differential Expression of KRAS and SIRT1 in Ovarian Cancers with and Without Endometriosis. Reproductive sciences (Thousand Oaks, Calif.), 27(1), 145–151. https://doi.org/10.1007/s43032-019-00017-4
Yu, L., Dong, L., Li, H. et al. Ubiquitination-mediated degradation of SIRT1 by SMURF2 suppresses CRC cell proliferation and tumorigenesis. Oncogene 39, 4450–4464 (2020). https://doi.org/10.1038/s41388-020-1298-0
Shin, D.H., Jo, J.Y., Choi, M. et al. Oncogenic KRAS mutation confers chemoresistance by upregulating SIRT1 in non-small cell lung cancer. Exp Mol Med 55, 2220–2237 (2023). https://doi.org/10.1038/s12276-023-01091-0
Wang, X., Liu, S., Xu, B., Liu, Y., Kong, P., Li, C., & Li, B. (2021). circ-SIRT1 Promotes Colorectal Cancer Proliferation and EMT by Recruiting and Binding to eIF4A3. Analytical cellular pathology (Amsterdam), 2021, 5739769. https://doi.org/10.1155/2021/5739769
Liu, H., Liu, N., Zhao, Y., Zhu, X., Wang, C., Liu, Q., Gao, C., Zhao, X., & Li, J. (2019). Oncogenic USP22 supports gastric cancer growth and metastasis by activating c-Myc/NAMPT/SIRT1-dependent FOXO1 and YAP signaling. Aging, 11(21), 9643–9660. https://doi.org/10.18632/aging.102410
Allison, S. J., Jiang, M., & Milner, J. (2009). Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging, 1(3), 316–327. https://doi.org/10.18632/aging.100028
Qiu, P., Hou, W., Wang, H. et al. Sirt1 deficiency upregulates glutathione metabolism to prevent hepatocellular carcinoma initiation in mice. Oncogene 40, 6023–6033 (2021). https://doi.org/10.1038/s41388-021-01993-1
Zhang, Y., Zhang, M., Dong, H. et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 28, 445–460 (2009). https://doi.org/10.1038/onc.2008.388
Zhao, L., Hu, K., Cao, J., Wang, P., Li, J., Zeng, K., He, X., Tu, P. F., Tong, T., & Han, L. (2019). lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging, 11(17), 7098–7122. https://doi.org/10.18632/aging.102240
Guo, R., Liang, Y., Zou, B., Li, D., Wu, Z., Xie, F., Zhang, X., & Li, X. (2022). The Histone Acetyltransferase MOF Regulates SIRT1 Expression to Suppress Renal Cell Carcinoma Progression. Frontiers in oncology, 12, 842967. https://doi.org/10.3389/fonc.2022.842967
Qu, W., Wang, Y., Wu, Q., Liu, J., & Hao, D. (2015). Emodin inhibits HMGB1-induced tumor angiogenesis in human osteosarcoma by regulating SIRT1. International journal of clinical and experimental medicine, 8(9), 15054–15064.
El-Ashmawy, N. E., Khedr, E. G., Khedr, N. F., & El-Adawy, S. A. (2023). Suppression of epithelial-mesenchymal transition and SIRT1/AKT signaling pathway in breast cancer by montelukast. International immunopharmacology, 119, 110148. https://doi.org/10.1016/j.intimp.2023.110148
Lin, X. L., Li, K., Yang, Z., Chen, B., & Zhang, T. (2020). Dulcitol suppresses proliferation and migration of hepatocellular carcinoma via regulating SIRT1/p53 pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology, 66, 153112. https://doi.org/10.1016/j.phymed.2019.153112
Ko, H. J., Park, S. Y., Sim, D. Y., Kim, S. H., Hur, S., Lee, J. H., & Kim, Y. (2024). Apoptotic Effect of Isoimpertorin via Inhibition of c-Myc and SIRT1 Signaling Axis. International journal of molecular sciences, 25(8), 4248. https://doi.org/10.3390/ijms25084248
Brockmueller, A., Buhrmann, C., Shayan, P., & Shakibaei, M. (2023). Resveratrol induces apoptosis by modulating the reciprocal crosstalk between p53 and Sirt-1 in the CRC tumor microenvironment. Frontiers in immunology, 14, 1225530. https://doi.org/10.3389/fimmu.2023.1225530
Eroglu, Z., Erdem, C., Oktem, G., Bozok Cetintas, V., & Duzgun, Z. (2020). Effect of SIRT1 activators and inhibitors on CD44+/CD133+ enriched non small cell lung cancer cells. Molecular medicine reports, 22(1), 575–581. https://doi.org/10.3892/mmr.2020.11113
Patra, S., Singh, A., Praharaj, P.P. et al. SIRT1 inhibits mitochondrial hyperfusion associated mito-bulb formation to sensitize oral cancer cells for apoptosis in a mtROS-dependent signalling pathway. Cell Death Dis 14, 732 (2023). https://doi.org/10.1038/s41419-023-06232-x
Yang, T., Zhou, R., Yu, S. et al. Cytoplasmic SIRT1 inhibits cell migration and invasion by impeding epithelial–mesenchymal transition in ovarian carcinoma. Mol Cell Biochem 459, 157–169 (2019). https://doi.org/10.1007/s11010-019-03559-y
Chao, SC., Chen, YJ., Huang, KH. et al. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep 7, 3180 (2017). https://doi.org/10.1038/s41598-017-03635-7
Kang, Y. Y., Sun, F. L., Zhang, Y., & Wang, Z. (2018). SIRT1 acts as a potential tumor suppressor in oral squamous cell carcinoma. Journal of the Chinese Medical Association : JCMA, 81(5), 416–422. https://doi.org/10.1016/j.jcma.2017.09.004
Park, J. H., Park, S. A., Lee, Y. J., Joo, N. R., Shin, J., & Oh, S. M. (2020). TOPK inhibition accelerates oxidative stress induced granulosa cell apoptosis via the p53/SIRT1 axis. International journal of molecular medicine, 46(5), 1923–1937. https://doi.org/10.3892/ijmm.2020.4712
Zhang, X., Li, Y., Wang, D. et al. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res 50, 27 (2017). https://doi.org/10.1186/s40659-017-0133-8
Tan, P., Wang, M., Zhong, A. et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 40, 6081–6092 (2021). https://doi.org/10.1038/s41388-021-01999-9
Jiang, Y., Luo, Z., Gong, Y. et al. NAD+ supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signaling. Oncogene 42, 808–824 (2023). https://doi.org/10.1038/s41388-023-02592-y
Ye, Z., Fang, B., Pan, J., Zhang, N., Huang, J., Xie, C., Lou, T., & Cao, Z. (2017). miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1. Oncology reports, 37(6), 3244–3252. https://doi.org/10.3892/or.2017.5619
Liu, C. L., Zhao, D., Li, J. J., Liu, S., An, J. J., Wang, D., Hu, F. A., Qiu, C. Y., & Cui, M. H. (2022). Inhibition of glioblastoma progression by Urolithin A in vitro and in vivo by regulating Sirt1-FOXO1 axis via ERK/AKT signaling pathways. Neoplasma, 69(1), 80–94. https://doi.org/10.4149/neo_2021_210623N834
Li, X., Jiang, Z., Li, X., & Zhang, X. (2018). SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing NF-κB signaling. OncoTargets and therapy, 11, 1157–1171. https://doi.org/10.2147/OTT.S137146
Wang, J., Li, J., Cao, N., Li, Z., Han, J., & Li, L. (2018). Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. OncoTargets and therapy, 11, 7777–7786. https://doi.org/10.2147/OTT.S159095
Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., Yeatman, T., Coppola, D., & Chen, J. (2009). SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. The Journal of biological chemistry, 284(27), 18210–18217. https://doi.org/10.1074/jbc.M109.000034
Wang, R. H., Zheng, Y., Kim, H. S., Xu, X., Cao, L., Luhasen, T., Lee, M. H., Xiao, C., Vassilopoulos, A., Chen, W., Gardner, K., Man, Y. G., Hung, M. C., Finkel, T., & Deng, C. X. (2008). Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Molecular cell, 32(1), 11–20. https://doi.org/10.1016/j.molcel.2008.09.011
“The Cost Of Cancer | SERO,” June 23, 2022. https://treatcancer.com/blog/cost-of-cancer/.
“The Rise of Cancer Cases,” February 8, 2024. https://www.medicalnewstoday.com/articles/an-estimated-35-million-new-cancer-cases-to-occur-in-2050-who-warns.
“Types of Cancer Treatment - NCI.” cgvMiniLanding, July 31, 2017. Nciglobal,ncienterprise. https://www.cancer.gov/about-cancer/treatment/types.
Devlin, E. J., Denson, L. A., & Whitford, H. S. (2017). Cancer Treatment Side Effects: A Meta-analysis of the Relationship Between Response Expectancies and Experience. Journal of pain and symptom management, 54(2), 245–258.e2. https://doi.org/10.1016/j.jpainsymman.2017.03.017
Weiss C. (2021). One in Four Dies of Cancer. Questions About the Epidemiology of Malignant Tumours. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 218, 15–29. https://doi.org/10.1007/978-3-030-63749-1_2
Vaziri, H., S. K. Dessain, E. Ng Eaton, S. I. Imai, R. A. Frye, T. K. Pandita, L. Guarente, and R. A. Weinberg. “hSIR2(SIRT1) Functions as an NAD-Dependent P53 Deacetylase.” Cell 107, no. 2 (October 19, 2001): 149–59. https://doi.org/10.1016/s0092-8674(01)00527-x.
Leeuwen, Ingeborg van, and Sonia Lain. “Sirtuins and P53.” Advances in Cancer Research 102 (2009): 171–95. https://doi.org/10.1016/S0065-230X(09)02005-3.
Langley, Emma, Mark Pearson, Mario Faretta, Uta-Maria Bauer, Roy A. Frye, Saverio Minucci, Pier Giuseppe Pelicci, and Tony Kouzarides. “Human SIR2 Deacetylates P53 and Antagonizes PML/P53-Induced Cellular Senescence.” The EMBO Journal 21, no. 10 (May 15, 2002): 2383–96. https://doi.org/10.1093/emboj/21.10.2383.
Luo, J., A. Y. Nikolaev, S. Imai, D. Chen, F. Su, A. Shiloh, L. Guarente, and W. Gu. “Negative Control of P53 by Sir2alpha Promotes Cell Survival under Stress.” Cell 107, no. 2 (October 19, 2001): 137–48. https://doi.org/10.1016/s0092-8674(01)00524-4.
Lin, Zhenghong, Heeyoung Yang, Qingfei Kong, Jinping Li, Sang-Myeong Lee, Beixue Gao, Hongxin Dong, et al. “USP22 Antagonizes P53 Transcriptional Activation by Deubiquitinating Sirt1 to Suppress Cell Apoptosis and Is Required for Mouse Embryonic Development.” Molecular Cell 46, no. 4 (May 25, 2012): 484–94. https://doi.org/10.1016/j.molcel.2012.03.024.
Geng, Jiefei, and Daniel J. Klionsky. “The Atg8 and Atg12 Ubiquitin-like Conjugation Systems in Macroautophagy. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series.” EMBO Reports 9, no. 9 (September 2008): 859–64. https://doi.org/10.1038/embor.2008.163.
Lee, In Hye, Liu Cao, Raul Mostoslavsky, David B. Lombard, Jie Liu, Nicholas E. Bruns, Maria Tsokos, Frederick W. Alt, and Toren Finkel. “A Role for the NAD-Dependent Deacetylase Sirt1 in the Regulation of Autophagy.” Proceedings of the National Academy of Sciences of the United States of America 105, no. 9 (March 4, 2008): 3374–79. https://doi.org/10.1073/pnas.0712145105.
Salminen, Antero, and Kai Kaarniranta. “SIRT1: Regulation of Longevity via Autophagy.” Cellular Signalling 21, no. 9 (September 2009): 1356–60. https://doi.org/10.1016/j.cellsig.2009.02.014.
Chen, Lin-feng, Yajun Mu, and Warner C. Greene. “Acetylation of RelA at Discrete Sites Regulates Distinct Nuclear Functions of NF-kappaB.” The EMBO Journal 21, no. 23 (December 2, 2002): 6539–48. https://doi.org/10.1093/emboj/cdf660.
Kiernan, Rosemary, Vanessa Brès, Raymond W. M. Ng, Marie-Pierre Coudart, Selma El Messaoudi, Claude Sardet, Dong-Yan Jin, Stephane Emiliani, and Monsef Benkirane. “Post-Activation Turn-off of NF-Kappa B-Dependent Transcription Is Regulated by Acetylation of P65.” The Journal of Biological Chemistry 278, no. 4 (January 24, 2003): 2758–66. https://doi.org/10.1074/jbc.M209572200.
Yang, Xiao-Dong, Emad Tajkhorshid, and Lin-Feng Chen. “Functional Interplay between Acetylation and Methylation of the RelA Subunit of NF-kappaB.” Molecular and Cellular Biology 30, no. 9 (May 2010): 2170–80. https://doi.org/10.1128/MCB.01343-09.
Yeung, Fan, Jamie E Hoberg, Catherine S Ramsey, Michael D Keller, David R Jones, Roy A Frye, and Marty W Mayo. “Modulation of NF-κB-Dependent Transcription and Cell Survival by the SIRT1 Deacetylase.” The EMBO Journal 23, no. 12 (June 16, 2004): 2369–80. https://doi.org/10.1038/sj.emboj.7600244.
Motta, Maria Carla, Nullin Divecha, Madeleine Lemieux, Christopher Kamel, Delin Chen, Wei Gu, Yvette Bultsma, Michael McBurney, and Leonard Guarente. “Mammalian SIRT1 Represses Forkhead Transcription Factors.” Cell 116, no. 4 (February 20, 2004): 551–63. https://doi.org/10.1016/s0092-8674(04)00126-6.
Nemoto, Shino, Maria M. Fergusson, and Toren Finkel. “SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1{alpha}.” The Journal of Biological Chemistry 280, no. 16 (April 22, 2005): 16456–60. https://doi.org/10.1074/jbc.M501485200.
Yang, Yonghua, Huayan Hou, Edward M. Haller, Santo V. Nicosia, and Wenlong Bai. “Suppression of FOXO1 Activity by FHL2 through SIRT1-Mediated Deacetylation.” The EMBO Journal 24, no. 5 (March 9, 2005): 1021–32. https://doi.org/10.1038/sj.emboj.7600570.
van der Horst, A., Tertoolen, L. G. J., de Vries-Smits, L. M. M., Frye, R. A., Medema, R. H., & Burgering, B. M. T. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). The Journal of Biological Chemistry, 279(28), 28873–28879. https://doi.org/10.1074/jbc.M401138200
Massagué, J. “TGF-Beta Signal Transduction.” Annual Review of Biochemistry 67 (1998): 753–91. https://doi.org/10.1146/annurev.biochem.67.1.753.
Massagué, J., S. W. Blain, and R. S. Lo. “TGFbeta Signaling in Growth Control, Cancer, and Heritable Disorders.” Cell 103, no. 2 (October 13, 2000): 295–309. https://doi.org/10.1016/s0092-8674(00)00121-5.
Xu, B., Chen, H., Xu, W., Zhang, W., Buckley, S., Zheng, S. G., Warburton, D., Kolb, M., Gauldie, J., & Shi, W. (2012). Molecular mechanisms of MMP9 overexpression and its role in emphysema pathogenesis of Smad3-deficient mice. American journal of physiology. Lung cellular and molecular physiology, 303(2), L89–L96. https://doi.org/10.1152/ajplung.00060.2012
Kume, Shinji, Masakazu Haneda, Keizo Kanasaki, Toshiro Sugimoto, Shin-ichi Araki, Keiji Isshiki, Motohide Isono, et al. “SIRT1 Inhibits Transforming Growth Factor β-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation *.” Journal of Biological Chemistry 282, no. 1 (January 5, 2007): 151–58. https://doi.org/10.1074/jbc.M605904200.
Li, Jinhua, Xinli Qu, Sharon D. Ricardo, John F. Bertram, and David J. Nikolic-Paterson. “Resveratrol Inhibits Renal Fibrosis in the Obstructed Kidney.” The American Journal of Pathology 177, no. 3 (September 2010): 1065–71. https://doi.org/10.2353/ajpath.2010.090923.
Baur, Joseph A., and David A. Sinclair. “Therapeutic Potential of Resveratrol: The in Vivo Evidence.” Nature Reviews. Drug Discovery 5, no. 6 (June 2006): 493–506. https://doi.org/10.1038/nrd2060.
Pervaiz, Shazib, and Andrea Lisa Holme. “Resveratrol: Its Biologic Targets and Functional Activity.” Antioxidants & Redox Signaling 11, no. 11 (November 2009): 2851–97. https://doi.org/10.1089/ars.2008.2412.
Lain, Sonia, Jonathan J. Hollick, Johanna Campbell, Oliver D. Staples, Maureen Higgins, Mustapha Aoubala, Anna McCarthy, et al. “Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule P53 Activator.” Cancer Cell 13, no. 5–2 (May 6, 2008): 454–63. https://doi.org/10.1016/j.ccr.2008.03.004.
Solomon, Jonathan M., Rao Pasupuleti, Lei Xu, Thomas McDonagh, Rory Curtis, Peter S. DiStefano, and L. Julie Huber. “Inhibition of SIRT1 Catalytic Activity Increases P53 Acetylation but Does Not Alter Cell Survival Following DNA Damage.” Molecular and Cellular Biology 26, no. 1 (January 2006): 28–38. https://doi.org/10.1128/MCB.26.1.28-38.2006.
Li, Huige. “Sirtuin 1 (SIRT1) and Oxidative Stress.” In Systems Biology of Free Radicals and Antioxidants, edited by Ismail Laher, 417–35. Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-642-30018-9_17.
Turkmen, Kultigin. “Chapter 4 - Sirtuins in Diabetes Mellitus and Diabetic Kidney Disease.” In Sirtuin Biology in Cancer and Metabolic Disease, edited by Kenneth Maiese, 61–77. Academic Press, 2021. https://doi.org/10.1016/B978-0-12-822467-0.00014-0.
Lin, Z., & Fang, D. (2013). The Roles of SIRT1 in Cancer. Genes & cancer, 4(3-4), 97–104. https://doi.org/10.1177/1947601912475079
Sun, M., Du, M., Zhang, W., Xiong, S., Gong, X., Lei, P., Zha, J., Zhu, H., Li, H., Huang, D., & Gu, X. (2019). Survival and Clinicopathological Significance of SIRT1 Expression in Cancers: A Meta-Analysis. Frontiers in endocrinology, 10, 121. https://doi.org/10.3389/fendo.2019.00121
Deng C. X. (2009). SIRT1, is it a tumor promoter or tumor suppressor?. International journal of biological sciences, 5(2), 147–152. https://doi.org/10.7150/ijbs.5.147
Bosch-Presegué, L., & Vaquero, A. (2011). The dual role of sirtuins in cancer. Genes & cancer, 2(6), 648–662. https://doi.org/10.1177/1947601911417862
Downloads
Posted
Categories
License
Copyright (c) 2024 Tuong Minh Le
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.