Preprint / Version 1

Investigation of the Interactions and Benefits of Music Therapy and TREM2 in the Reduction of Alzheimer’s Disease

##article.authors##

  • Sophie Nam Henry M. Gunn High School

DOI:

https://doi.org/10.58445/rars.1602

Keywords:

Alzheimer's Disease, music therapy, TREM2

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, driven by complex interactions between genetic factors and environmental influences. Despite advancement in the understanding of AD, therapeutic approaches are limited. Among the potential therapeutic approaches, there are triggering receptor expressed on myeloid cells 2 (TREM2) and music therapy. TREM2 has been identified as a key genetic factor and potential therapeutic target for AD. TREM2, predominantly expressed in central nervous system (CNS) microglia, is involved in crucial microglial functions such as proliferation and phagocytosis. TREM2 also plays a role in regulating inflammatory responses and cell signaling pathways. Meanwhile music therapy has emerged as a promising non-pharmacological approach for managing AD symptoms, with evidence suggesting it can improve cognitive function, emotional well-being, and overall quality of life. This review evaluates both non-pharmacological and pharmacological treatments for AD, focusing on music therapy and the role of TREM2. We will discuss the current evidence supporting them and their potential mechanisms. Additionally, the review will explore a proposed connection between music therapy and TREM2, promoting further research into their combined effects. By providing a comprehensive overview, this review seeks to guide future studies and enhance therapeutic approaches for Alzheimer's disease.

References

Akwa, Y. (2020). Steroids and Alzheimer’s Disease: Changes Associated with Pathology and Therapeutic Potential. International Journal of Molecular Sciences, 21(13), Article 13. https://doi.org/10.3390/ijms21134812

Bolmont, T., Clavaguera, F., Meyer-Luehmann, M., Herzig, M. C., Radde, R., Staufenbiel, M., Lewis, J., Hutton, M., Tolnay, M., & Jucker, M. (2007). Induction of Tau Pathology by Intracerebral Infusion of Amyloid-β-Containing Brain Extract and by Amyloid-β Deposition in APP × Tau Transgenic Mice. The American Journal of Pathology, 171(6), 2012–2020. https://doi.org/10.2353/ajpath.2007.070403

Brotons, M., & Koger, S. M. (2000). The impact of music therapy on language functioning in dementia. Journal of Music Therapy, 37(3), 183–195. https://doi.org/10.1093/jmt/37.3.183

Cameron, B., & Landreth, G. E. (2010). Inflammation, microglia, and alzheimer’s disease. Neurobiology of Disease, 37(3), 503–509. https://doi.org/10.1016/j.nbd.2009.10.006

Ceccato, E., Vigato, G., Bonetto, C., Bevilacqua, A., Pizziolo, P., Crociani, S., Zanfretta, E., Pollini, L., Caneva, P. A., Baldin, L., Frongillo, C., Signorini, A., Demoro, S., & Barchi, E. (2012). STAM Protocol in Dementia. American Journal of Alzheimer’s Disease and Other Dementias, 27(5), 301–310. https://doi.org/10.1177/1533317512452038

Chen, R., Chan, P.-T., Chu, H., Lin, Y.-C., Chang, P.-C., Chen, C.-Y., & Chou, K.-R. (2017). Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: A meta-analysis. PLoS ONE, 12(8), e0183586. https://doi.org/10.1371/journal.pone.0183586

Cho, L., Kaunitz, A. M., Faubion, S. S., Hayes, S. N., Lau, E. S., Pristera, N., Scott, N., Shifren, J. L., Shufelt, C. L., Stuenkel, C. A., & Lindley, K. J. (2023). Rethinking Menopausal Hormone Therapy: For Whom, What, When and How long? Circulation, 147(7), 597–610. https://doi.org/10.1161/CIRCULATIONAHA.122.061559

Cornell, J., Salinas, S., Huang, H.-Y., & Zhou, M. (2021). Microglia regulation of synaptic plasticity and learning and memory. Neural Regeneration Research, 17(4), 705–716. https://doi.org/10.4103/1673-5374.322423

Deczkowska, A., Weiner, A., & Amit, I. (2020). The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell, 181(6), 1207–1217. https://doi.org/10.1016/j.cell.2020.05.003

DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration, 14(1), 32. https://doi.org/10.1186/s13024-019-0333-5

Fang, R., Ye, S., Huangfu, J., & Calimag, D. P. (2017). Music therapy is a potential intervention for cognition of Alzheimer’s Disease: A mini-review. Translational Neurodegeneration, 6, 2. https://doi.org/10.1186/s40035-017-0073-9

Fassler, M., Rappaport, M. S., Cuño, C. B., & George, J. (2021). Engagement of TREM2 by a novel monoclonal antibody induces activation of microglia and improves cognitive function in Alzheimer’s disease models. Journal of Neuroinflammation, 18(1), 19. https://doi.org/10.1186/s12974-020-01980-5

Fukui, H., Arai, A., & Toyoshima, K. (2012). Efficacy of Music Therapy in Treatment for the Patients with Alzheimer’s Disease. International Journal of Alzheimer’s Disease, 2012, 531646. https://doi.org/10.1155/2012/531646

Gómez-Gallego, M., Gómez-Gallego, J. C., Gallego-Mellado, M., & García-García, J. (2021). Comparative Efficacy of Active Group Music Intervention versus Group Music Listening in Alzheimer’s Disease. International Journal of Environmental Research and Public Health, 18(15), 8067. https://doi.org/10.3390/ijerph18158067

Götell, E., Brown, S., & Ekman, S.-L. (2009). The influence of caregiver singing and background music on vocally expressed emotions and moods in dementia care. International Journal of Nursing Studies, 46(4), 422–430. https://doi.org/10.1016/j.ijnurstu.2007.11.001

Irish, M., Cunningham, C. J., Walsh, J. B., Coakley, D., Lawlor, B. A., Robertson, I. H., & Coen, R. F. (2006). Investigating the Enhancing Effect of Music on Autobiographical Memory in Mild Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders, 22(1), 108–120. https://doi.org/10.1159/000093487

Jay, T. R., Hirsch, A. M., Broihier, M. L., Miller, C. M., Neilson, L. E., Ransohoff, R. M., Lamb, B. T., & Landreth, G. E. (2017). Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer’s Disease. The Journal of Neuroscience, 37(3), 637–647. https://doi.org/10.1523/JNEUROSCI.2110-16.2016

Jiang, T., Tan, L., Zhu, X.-C., Zhang, Q.-Q., Cao, L., Tan, M.-S., Gu, L.-Z., Wang, H.-F., Ding, Z.-Z., Zhang, Y.-D., & Yu, J.-T. (2014). Upregulation of TREM2 Ameliorates Neuropathology and Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease. Neuropsychopharmacology, 39(13), 2949–2962. https://doi.org/10.1038/npp.2014.164

Johnson, J. K., Cotman, C. W., Tasaki, C. S., & Shaw, G. L. (1998). Enhancement of spatial-temporal reasoning after a Mozart listening condition in Alzheimer’s disease: A case study. Neurological Research, 20(8), 666–672. https://doi.org/10.1080/01616412.1998.11740582

Kim, I.-B., Lee, J.-H., & Park, S.-C. (2022). The Relationship between Stress, Inflammation, and Depression. Biomedicines, 10(8), 1929. https://doi.org/10.3390/biomedicines10081929

Koelsch, S. (2009). A Neuroscientific Perspective on Music Therapy. Annals of the New York Academy of Sciences, 1169(1), 374–384. https://doi.org/10.1111/j.1749-6632.2009.04592.x

Konishi, H., & Kiyama, H. (2018). Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00206

Lee, C. Y. D., Daggett, A., Gu, X., Jiang, L.-L., Langfelder, P., Li, X., Wang, N., Zhao, Y., Park, C. S., Cooper, Y., Ferando, I., Mody, I., Coppola, G., Xu, H., & Yang, X. W. (2018). Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer’s Disease Models. Neuron, 97(5), 1032-1048.e5. https://doi.org/10.1016/j.neuron.2018.02.002

Li, C.-H., Liu, C.-K., Yang, Y.-H., Chou, M.-C., Chen, C.-H., & Lai, C.-L. (2015). Adjunct effect of music therapy on cognition in Alzheimer’s disease in Taiwan: A pilot study. Neuropsychiatric Disease and Treatment, 11, 291–296. https://doi.org/10.2147/NDT.S73928

Li, Y., Xu, H., Wang, H., Yang, K., Luan, J., & Wang, S. (2023). TREM2: Potential therapeutic targeting of microglia for Alzheimer’s disease. Biomedicine & Pharmacotherapy, 165, 115218. https://doi.org/10.1016/j.biopha.2023.115218

Lyu, J., Zhang, J., Mu, H., Li, W., Champ, M., Xiong, Q., Gao, T., Xie, L., Jin, W., Yang, W., Cui, M., Gao, M., & Li, M. (2018). The Effects of Music Therapy on Cognition, Psychiatric Symptoms, and Activities of Daily Living in Patients with Alzheimer’s Disease. Journal of Alzheimer’s Disease, 64(4), 1347–1358. https://doi.org/10.3233/JAD-180183

Massoud, F., & Léger, G. C. (2011). Pharmacological Treatment of Alzheimer Disease. The Canadian Journal of Psychiatry, 56(10), 579–588. https://doi.org/10.1177/070674371105601003

Mateos, L., Persson, T., Kathozi, S., Gil-Bea, F. J., & Cedazo-Minguez, A. (2012). Estrogen protects against amyloid-β toxicity by estrogen receptor α-mediated inhibition of Daxx translocation. Neuroscience Letters, 506(2), 245–250. https://doi.org/10.1016/j.neulet.2011.11.016

Nilsen, J., Chen, S., Irwin, R. W., Iwamoto, S., & Brinton, R. D. (2006). Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neuroscience, 7(1), 74. https://doi.org/10.1186/1471-2202-7-74

Pourhadi, N., Mørch, L. S., Holm, E. A., Torp-Pedersen, C., & Meaidi, A. (2023). Menopausal hormone therapy and dementia: Nationwide, nested case-control study. BMJ, 381, e072770. https://doi.org/10.1136/bmj-2022-072770

Raglio, A., Filippi, S., Bellandi, D., & Stramba-Badiale, M. (2014). Global music approach to persons with dementia: Evidence and practice. Clinical Interventions in Aging, 9, 1669–1676. https://doi.org/10.2147/CIA.S71388

Ragneskog, H., Bråne, G., Karlsson, I., & Kihlgren, M. (1996). Influence of Dinner Music on Food Intake and Symptoms Common in Dementia. Scandinavian Journal of Caring Sciences, 10(1), 11–17. https://doi.org/10.1111/j.1471-6712.1996.tb00304.x

Rosario, E. R., Chang, L., Head, E. H., Stanczyk, F. Z., & Pike, C. J. (2011). Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiology of Aging, 32(4), 604–613. https://doi.org/10.1016/j.neurobiolaging.2009.04.008

Sakamoto, M., Ando, H., & Tsutou, A. (2013). Comparing the effects of different individualized music interventions for elderly individuals with severe dementia. International Psychogeriatrics / Ipa, 25(5), 775–784. https://doi.org/10.1017/S1041610212002256

Satoh, M., Yuba, T., Tabei, K., Okubo, Y., Kida, H., Sakuma, H., & Tomimoto, H. (2015). Music Therapy Using Singing Training Improves Psychomotor Speed in Patients with Alzheimer’s Disease: A Neuropsychological and fMRI Study. Dementia and Geriatric Cognitive Disorders EXTRA, 5(3), 296–308. https://doi.org/10.1159/000436960

Scheltens, P., Blennow, K., Breteler, M. M. B., de Strooper, B., Frisoni, G. B., Salloway, S., & Van der Flier, W. M. (2016). Alzheimer’s disease. The Lancet, 388(10043), 505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

Shumaker, S. A., Legault, C., Rapp, S. R., Thal, L., Wallace, R. B., Ockene, J. K., Hendrix, S. L., Jones III, B. N., Assaf, A. R., Jackson, R. D., Morley Kotchen, J., Wassertheil-Smoller, S., Wactawski-Wende, J., & for the WHIMS Investigators. (2003). Estrogen Plus Progestin and the Incidence of Dementia and Mild Cognitive Impairment in Postmenopausal WomenThe Women’s Health Initiative Memory Study: A Randomized Controlled Trial. JAMA, 289(20), 2651–2662. https://doi.org/10.1001/jama.289.20.2651

Svansdottir, H. B., & Snaedal, J. (2006). Music therapy in moderate and severe dementia of Alzheimer’s type: A case–control study. International Psychogeriatrics, 18(4), 613–621. https://doi.org/10.1017/S1041610206003206

Takahashi, K., Rochford, C. D. P., & Neumann, H. (2005). Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. The Journal of Experimental Medicine, 201(4), 647–657. https://doi.org/10.1084/jem.20041611

Wang, M., Hu, S., Fu, X., Zhou, H., Yang, S., & Yang, C. (2024). Neurosteroids: A potential target for neuropsychiatric disorders. The Journal of Steroid Biochemistry and Molecular Biology, 239, 106485. https://doi.org/10.1016/j.jsbmb.2024.106485

Wang, S., Mustafa, M., Yuede, C. M., Salazar, S. V., Kong, P., Long, H., Ward, M., Siddiqui, O., Paul, R., Gilfillan, S., Ibrahim, A., Rhinn, H., Tassi, I., Rosenthal, A., Schwabe, T., & Colonna, M. (2020). Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. The Journal of Experimental Medicine, 217(9), e20200785. https://doi.org/10.1084/jem.20200785

Wang, Y., Lin, Y., Wang, L., Zhan, H., Luo, X., Zeng, Y., Wu, W., Zhang, X., & Wang, F. (2020). TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice. Aging (Albany NY), 12(20), 20862–20879. https://doi.org/10.18632/aging.104104

Wharton, W., Baker, L. D., Gleason, C. E., Dowling, M., Barnet, J. H., Johnson, S., Carlsson, C., Craft, S., & Asthana, S. (2011). Short-term Hormone Therapy with Transdermal Estradiol Improves Cognition for Postmenopausal Women with Alzheimer’s Disease: Results of a Randomized Controlled Trial. Journal of Alzheimer’s Disease, 26(3), 495–505. https://doi.org/10.3233/JAD-2011-110341

Whitmer, R. A., Quesenberry, C. P., Zhou, J., & Yaffe, K. (2011). Timing of Hormone Therapy and Dementia: The Critical Window Theory Re-visited. Annals of Neurology, 69(1), 163–169. https://doi.org/10.1002/ana.22239

Zhong, L., Xu, Y., Zhuo, R., Wang, T., Wang, K., Huang, R., Wang, D., Gao, Y., Zhu, Y., Sheng, X., Chen, K., Wang, N., Zhu, L., Can, D., Marten, Y., Shinohara, M., Liu, C.-C., Du, D., Sun, H., … Chen, X.-F. (2019). Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nature Communications, 10(1), 1365. https://doi.org/10.1038/s41467-019-09118-9

Downloads

Posted

2024-09-07