Preprint / Version 1

Making of an athlete

Tissue-specific analysis of genetic regulators of athletic performance

##article.authors##

  • Sri Riddhi Guruzu DRS International school

DOI:

https://doi.org/10.58445/rars.1564

Keywords:

athlete, athletic performance, genetics

Abstract

Unquestionably, researchers agree that genetic makeup is crucial in determining athletic performance abilities. Previous research has evaluated various populations through genetic analysis and revealed patterns of inheritance linking specific genetic loci to higher performance. This research explored the candidate genes that allow enhanced athletic performance across various body systems, including the muscular, nervous, and circulatory systems. An evaluation of the most studied genetic hits from each body system, including genes such as ACE, BDNF, and EPOR, was explored. The mechanism of action of each genetic loci and the variation/mutation that impacts athletic performance were examined. The findings suggested that ACE, BDNF, and EPOR strongly influence mechanisms within the muscular, nervous, and circulatory systems, respectively, enhancing athletic performance across different sports disciplines. This review also explores biological mechanisms, steroids, doping, neuro-modifications, and CRISPR, that can modify key biological substrates that underlie athletic performance in individuals. Beyond genetics, it is generally understood that athletic performance success is often unpredictable due to environmental factors that affect physiological, psychological, and motor characteristics. This, combined with the ethical considerations surrounding the modification of key biological substrates involved in athletic performance highlights the dynamic landscape surrounding this area of research and the translational impact of genetics research in the field of human performance.

References

De Moor MHM, Spector TD, Cherkas LF, et al. Genome-wide linkage scan for athlete status in 700

British female DZ twin pairs. Twin Res Hum Genet Off J Int Soc Twin Stud. 2007;10(6):812-820.

doi:10.1375/twin.10.6.812

Maharam L, Bauman P, Kalman D, Skolnik H, Perle S. Masters athletes: factors affecting

performance. Sports Med Auckl NZ. 1999;28:273-285.

Gavin R. Factors That Effect Sports Performance: Sleep, Mood, Having a Pre-Match Routine.

Trecroci A, Formenti D, Moran J, Pedreschi D, Rossi A. Editorial: Factors Affecting Performance

and Recovery in Team Sports: A Multidimensional Perspective. Front Physiol. 2022;13:877879.

doi:10.3389/fphys.2022.877879

Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes.

;14(6):1235. doi:10.3390/genes14061235

ACE angiotensin I converting enzyme [Homo sapiens (human)]- Gene- NCBI. Accessed May 19,

https://www.ncbi.nlm.nih.gov/gene/1636

Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature.

;393(6682):221-222. doi:10.1038/30374

Gayagay G, Yu B, Hambly B, et al. Elite endurance athletes and the ACE I allele – the role of

genes in athletic performance. Hum Genet. 1998;103(1):48-50. doi:10.1007/s004390050781

Nazarov IB, Woods DR, Montgomery HE, et al. The angiotensin converting enzyme I/D

polymorphism in Russian athletes. Eur J Hum Genet. 2001;9(10):797-801.

doi:10.1038/sj.ejhg.5200711

Myerson S, Hemingway H, Budget R, et al. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol. 1999;87(4):1313-1316. doi:10.1152/jappl.1999.87.4.1313

Jelaković B, Kuzmanić D, Milicić D, et al. I022: Influence of angiotensin converting enzyme (ACE)

gene polymorphism and circadian blood pressure (BP) changes on left ventricule (LV) mass in

competitive oarsmen. Am J Hypertens. 2000;13(S2):182A. doi:10.1016/S0895-7061(00)01168-7

Ahmetov II, Popov DV, Astratenkova IV, et al. The use of molecular genetic methods for prognosis of aerobic and anaerobic performance in athletes. Hum Physiol. 2008;34(3):338-342.

doi:10.1134/S0362119708030110

Alvarez R, Terrados N, Ortolano R, et al. Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol. 2000;82(1):117-120. doi:10.1007/s004210050660

Collins M, Xenophontos SL, Cariolou MA, et al. The ACE Gene and Endurance Performance during the South African Ironman Triathlons. Med Sci Sports Exerc. 2004;36(8):1314.

doi:10.1249/01.MSS.0000135779.41475.42

Lucía A, Gómez-Gallego F, Chicharro JL, et al. Is there an Association between ACE and CKMM

Polymorphisms and Cycling Performance Status during 3-Week Races? Int J Sports Med.

;26(06):442-447. doi:10.1055/s-2004-821108

The angiotensin converting enzyme I/D polymorphism in long distance runners- ProQuest.

Accessed May 19, 2024.

https://www.proquest.com/openview/4982fa0c707e91af301f6acbffaa44ec/1?pq-origsite=gscholar&cbl=4718

Scanavini D, Bernardi F, Castoldi E, Conconi F, Mazzoni G. Increased frequency of the

homozygous II ACE genotype in Italian Olympic endurance athletes. Eur J Hum Genet.

;10(10):576-577. doi:10.1038/sj.ejhg.5200852

Turgut G, Turgut S, Genç O, Atalay A, Atalay EÖ. The Angiotensin Converting Enzyme I/D

Polymorphism in Turkish Athletes and Sedentary Controls. Acta Medica Hradec Kralove Czech

Repub. 2019;47(2):133-136. doi:10.14712/18059694.2018.79

Tsianos G, Sanders J, Dhamrait S, Humphries S, Grant S, Montgomery H. The ACE gene

insertion/deletion polymorphism and elite endurance swimming. Eur J Appl Physiol.

;92(3):360-362. doi:10.1007/s00421-004-1120-7

Cieszczyk P, Krupecki K, Maciejewska A, Sawczuk M. The Angiotensin Converting Enzyme Gene I/D Polymorphism in Polish Rowers. Int J Sports Med. 2009;30(08):624-627.

doi:10.1055/s-0029-1202825

Min SK, Takahashi K, Ishigami H, et al. Is there a gender difference between ACE gene and race distance? Appl Physiol Nutr Metab. 2009;34(5):926-932. doi:10.1139/H09-097

Shenoy S. Association of Angiotensin Converting Enzyme gene Polymorphism and Indian Army Triathletes Performance. Asian J Sports Med. 2010;1(3):143-150. doi:10.5812/asjsm.34855

Znazen H, Mejri A, Touhami I, et al. Genetic advantageous predisposition of angiotensin converting enzyme id polymorphism in Tunisian athletes. J Sports Med Phys Fitness. 2016;56(6):724-730.

Ash GI, Scott RA, Deason M, et al. No Association between ACE Gene Variation and Endurance Athlete Status in Ethiopians. Med Sci Sports Exerc. 2011;43(4):590.

doi:10.1249/MSS.0b013e3181f70bd6

Tobina T, Michishita R, Yamasawa F, et al. Association between the angiotensin I-converting

enzyme gene insertion/deletion polymorphism and endurance running speed in Japanese runners. J Physiol Sci. 2010;60(5):325-330. doi:10.1007/s12576-010-0100-4

Ahmetov II, Williams AG, Popov DV, et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet. 2009;126(6):751-761. doi:10.1007/s00439-009-0728-4

The ACEI/D polymorphism in elite Greek track and field athletes | Request PDF. Accessed May 19, 2024. https://www.researchgate.net/publication/41089398_The_ACE_ID_polymorphism_in_elite_Greek_track_and_field_athletes

Scott RA, Moran C, Wilson RH, et al. No association between Angiotensin Converting Enzyme

(ACE) gene variation and endurance athlete status in Kenyans. Comp Biochem Physiol A Mol

Integr Physiol. 2005;141(2):169-175. doi:10.1016/j.cbpb.2005.05.001

Rankinen T, Wolfarth B, Simoneau JA, et al. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol. 2000;88(5):1571-1575. doi:10.1152/jappl.2000.88.5.1571

Taylor: Elite athletes and the gene for angiotensin-conve...- Google Scholar. Accessed May 19,

https://scholar.google.com/scholar_lookup?title=Elite+athletes+and+the+gene+for+angiotensin-converting+enzyme&author=Taylor,+R.R.&author=Mamotte,+C.D.&author=Fallon,+K.&author=van+Bockxmeer,+F.M.&publication_year=1999&journal=J.+Appl.+Physiol.&volume=87&pages=1035%E2%80%931037&doi=10.1152/jappl.1999.87.3.1035

The association between ace gene variation and aerobic capacity in winter endurance disciplines PubMed. Accessed May 19, 2024. https://pubmed.ncbi.nlm.nih.gov/24795498/

Ginevičienė V, Pranculis A, Jakaitienė A, Milašius K, Kučinskas V. Genetic Variation of the Human ACE and ACTN3 Genes and Their Association With Functional Muscle Properties in Lithuanian Elite Athletes. Medicina (Mex). 2011;47(5):40. doi:10.3390/medicina47050040

Muniesa CA, González-Freire M, Santiago C, et al. World-class performance in lightweight rowing: is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br J Sports Med. 2010;44(12):898-901. doi:10.1136/bjsm.2008.051680

Papadimitriou ID, Lockey SJ, Voisin S, et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics.

;19(1):13. doi:10.1186/s12864-017-4412-0

Varillas-Delgado D, Morencos E, Gutiérrez-Hellín J, et al. Genetic profiles to identify talents in elite endurance athletes and professional football players. PLOS ONE. 2022;17(9):e0274880.

doi:10.1371/journal.pone.0274880

ACTN3actinin alpha 3 [Homo sapiens (human)]- Gene- NCBI. Accessed May 19, 2024.

https://www.ncbi.nlm.nih.gov/gene/89

Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 Genotype Is Associated with Human Elite Athletic Performance. Am J Hum Genet. 2003;73(3):627-631. doi:10.1086/377590

Shang X, Huang C, Chang Q, Zhang L, Huang T. Association Between the ACTN3 R577X

Polymorphism and Female Endurance Athletes in China. Int J Sports Med. 2010;31(12):913-916.

doi:10.1055/s-0030-1265176

Gasser B, Flück M, Frey WO, Valdivieso P, Spörri J. Association of Gene Variants for Mechanical and Metabolic Muscle Quality with Cardiorespiratory and Muscular Variables Related to Performance in Skiing Athletes. Genes. 2022;13(10):1798. doi:10.3390/genes13101798

Orysiak J, Sitkowski D, Zmijewski P, et al. Overrepresentation of the ACTN3 XX Genotype in Elite Canoe and Kayak Paddlers. J Strength Cond Res. 2015;29(4):1107.

doi:10.1519/JSC.0000000000000717

Ahmetov II, Druzhevskaya AM, Astratenkova IV, Popov DV, Vinogradova OL, Rogozkin VA. The

ACTN3 R577X polymorphism in Russian endurance athletes. Br J Sports Med.

;44(9):649-652. doi:10.1136/bjsm.2008.051540

Döring FE, Onur S, Geisen U, et al. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci. 2010;28(12):1355-1359. doi:10.1080/02640414.2010.507675

Ginevičienė: Relating fitness phenotypes to genotypes...- Google Scholar. Accessed May 19, 2024. https://scholar.google.com/scholar_lookup?title=Relating+fitness+phenotypes+to+genotypes+in+Lithuanian+elite+athletes&author=Ginevi%C4%8Dien%C4%97,+V.&author=Pranckevi%C4%8Dien%C4%97,+E.&author=Mila%C5%A1ius,+K.&author=Ku%C4%8Dinskas,+V.&publication_year=2010&journal=Acta+Med.+Litu.&volume=17&pages=1%E2%80%9310&doi=10.2478/v10140-010-0001-0

Tsianos: Associations of polymorphisms of eight muscle-or...- Google Scholar. Accessed May 19, 2024.

https://scholar.google.com/scholar_lookup title=Associations+of+polymorphisms+of+eight+muscle

+or+metabolismrelated+genes+with+performance+in+Mount+Olympus+marathon+runners&author

=Tsianos,+G.I.&author=Evangelou,+E.&author=Boot,+A.&author=Zillikens,+M.C.&author=van+Meu

rs,+J.B.&author=Uitterlinden,+A.G.&author=Ioannidis,+J.P.&publication_year=2010&journal=J.+App

l.+Physiol.&volume=108&pages=567%E2%80%93574&doi=10.1152/japplphysiol.00780.2009

Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and

sprint athletes. Eur J Hum Genet. 2005;13(8):965-969. doi:10.1038/sj.ejhg.5201438

Papadimitriou ID, Papadopoulos C, Kouvatsi A, Triantaphyllidis C. The ACTN3 Gene in Elite Greek

Track and Field Athletes. Int J Sports Med. 2008;29(04):352-355. doi:10.1055/s-2007-965339

Paparini A, Ripani M, Giordano GD, Santoni D, Pigozzi F, Romano-Spica V. ACTN3 Genotyping by

Real-Time PCR in the Italian Population and Athletes. Med Sci Sports Exerc. 2007;39(5):810.

doi:10.1097/mss.0b013e3180317491

Saunders CJ, September AV, Xenophontos SL, et al. No Association of the ACTN3 Gene R577X

Polymorphism with Endurance Performance in Ironman Triathlons. Ann Hum Genet.

;71(6):777-781. doi:10.1111/j.1469-1809.2006.00385.x

Yang N, Macarthur DG, Wolde B, et al. The ACTN3 R577X Polymorphism in East and West African

Athletes. Med Sci Sports Exerc. 2007;39(11):1985. doi:10.1249/mss.0b013e31814844c9

Lucia A, Gómez-Gallego F, Santiago C, et al. ACTN3 Genotype in Professional Endurance Cyclists.

Int J Sports Med. 2006;27(11):880-884. doi:10.1055/s-2006-923862

Grealy R, Smith CLE, Chen T, Hiller D, Haseler LJ, Griffiths LR. The genetics of endurance:

Frequency of the ACTN3 R577X variant in Ironman World Championship athletes. J Sci Med Sport.

;16(4):365-371. doi:10.1016/j.jsams.2012.08.013

Mikami E, Fuku N, Murakami H, et al. ACTN3 R577X Genotype is Associated with Sprinting in Elite

Japanese Athletes. Int J Sports Med. 2014;35(02):172-177. doi:10.1055/s-0033-1347171

WangG, Mikami E, Chiu LL, et al. Association Analysis of ACE and ACTN3 in Elite Caucasian and

East Asian Swimmers. Med Sci Sports Exerc. 2013;45(5):892.

doi:10.1249/MSS.0b013e31827c501f

Yang R, Jin F, Wang L, et al. Prediction and Identification of Power Performance Using Polygenic

Models of Three Single-Nucleotide Polymorphisms in Chinese Elite Athletes. Front Genet. 2021;12.

doi:10.3389/fgene.2021.726552

ADRB2adrenoceptor beta 2 [Homo sapiens (human)]- Gene- NCBI. Accessed May 19, 2024.

https://www.ncbi.nlm.nih.gov/gene/154

Wagoner LE, Craft LL, Singh B, et al. Polymorphisms of the beta(2)-adrenergic receptor determine

exercise capacity in patients with heart failure. Circ Res. 2000;86(8):834-840.

doi:10.1161/01.res.86.8.834

Wolfarth B, Rankinen T, Mühlbauer S, et al. Association between a β2-adrenergic receptor

polymorphism and elite endurance performance. Metab- Clin Exp. 2007;56(12):1649-1651.

doi:10.1016/j.metabol.2007.07.006

Santiago C, Ruiz JR, Buxens A, et al. Trp64Arg polymorphism in ADRB3 gene is associated with

elite endurance performance. Br J Sports Med. 2011;45(2):147-149. doi:10.1136/bjsm.2009.061366

Sawczuk M, Maciejewska-Karlowska A, Cieszczyk P, Skotarczak B, Ficek K. Association of the

ADRB2 Gly16Arg and Glu27Gln polymorphisms with athlete status. J Sports Sci.

;31(14):1535-1544. doi:10.1080/02640414.2013.786184

AMPD1adenosine monophosphate deaminase 1 [Homo sapiens (human)]- Gene- NCBI.

Accessed May 19, 2024. https://www.ncbi.nlm.nih.gov/gene/270

Rubio JC, Martín MA, Rabadán M, et al. Frequency of the C34T mutation of the AMPD1 gene in

world-class endurance athletes: does this mutation impair performance? J Appl Physiol.

;98(6):2108-2112. doi:10.1152/japplphysiol.01371.2004

Rico-Sanz J, Rankinen T, Joanisse DR, et al. Associations between cardiorespiratory responses to

exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family study. Physiol

Genomics. 2003;14(2):161-166. doi:10.1152/physiolgenomics.00165.2002

Thomaes T, Thomis M, Onkelinx S, et al. A genetic predisposition score for muscular

endophenotypes predicts the increase in aerobic power after training: the CAREGENE study. BMC

Genet. 2011;12(1):84. doi:10.1186/1471-2156-12-84

Ciȩszczyk P, Eider J, Ostanek M, et al. Is the C34T Polymorphism of the AMPD1 Gene Associated

with Athlete Performance in Rowing? Int J Sports Med. 2011;32(12):987-991.

doi:10.1055/s-0031-1283186

Ginevičienė V, Jakaitienė A, Pranculis A, Milašius K, Tubelis L, Utkus A. AMPD1rs17602729 is

associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet.

;15(1):58. doi:10.1186/1471-2156-15-58

BDKRB2bradykinin receptor B2 [Homo sapiens (human)]- Gene- NCBI. Accessed May 19, 2024.

https://www.ncbi.nlm.nih.gov/gene/624

Williams AG, Dhamrait SS, Wootton PTE, et al. Bradykinin receptor gene variant and human

physical performance. J Appl Physiol. 2004;96(3):938-942. doi:10.1152/japplphysiol.00865.2003

Saunders CJ, Xenophontos SL, Cariolou MA, Anastassiades LC, Noakes TD, Collins M. The

bradykinin β2 receptor (BDKRB2) and endothelial nitric oxide synthase 3 (NOS3) genes and

endurance performance during Ironman Triathlons. Hum Mol Genet. 2006;15(6):979-987.

doi:10.1093/hmg/ddl014

Sawczuk M, Timshina YI, Astratenkova IV, et al. The-9 / 9 Polymorphism of the Bradykinin

Receptor Beta 2 Gene and Athlete Status: A Study Involving Two European Cohorts. Hum Biol.

;85(5):741-755. doi:10.3378/027.085.0511

Grenda: Bdkrb2 gene-9/+ 9 polymorphism and swimming...- Google Scholar. Accessed May 19,

https://scholar.google.com/scholar_lookup?title=Bdkrb2+gene+-9/+9+polymorphism+and+swimmin

g+performance&author=Grenda,+A.&author=Leo%C5%84ska-Duniec,+A.&author=Ci%C4%99szcz

yk,+P.&author=Zmijewski,+P.&publication_year=2014&journal=Biol.+Sport&volume=31&pages=109

%E2%80%93113&doi=10.5604/20831862.1096047

Zmijewski P, Grenda A, Leonska-Duniec A, Ahmetov I, Orysiak J, Cieszczyk P. Effect of BDKRB2

Gene −9/+9 Polymorphism on Training Improvements in Competitive Swimmers. J Strength Cond

Res. 2016;30(3):665. doi:10.1519/JSC.0000000000001145

HFEhomeostatic iron regulator [Homo sapiens (human)]- Gene- NCBI. Accessed May 19, 2024.

https://www.ncbi.nlm.nih.gov/gene/3077

Deugnier Y, Loréal O, Carré F, et al. Increased body iron stores in elite road cyclists. Med Sci Sports

Exerc. 2002;34(5):876.

Chicharro JL, Hoyos J, Gómez-Gallego F, et al. Mutations in the hereditary haemochromatosis

gene HFE in professional endurance athletes. Br J Sports Med. 2004;38(4):418-421.

doi:10.1136/bjsm.2002.003921

Hermine O, Dine G, Genty V, et al. Eighty percent of French sport winners in Olympic, World and

Europeans competitions have mutations in the hemochromatosis HFE gene. Biochimie.

;119:1-5. doi:10.1016/j.biochi.2015.09.028

Semenova EA, Miyamoto-Mikami E, Akimov EB, et al. The association of HFE gene H63D

polymorphism with endurance athlete status and aerobic capacity: novel findings and a

meta-analysis. Eur J Appl Physiol. 2020;120(3):665-673. doi:10.1007/s00421-020-04306-8

HIF1A hypoxia inducible factor 1 subunit alpha [Homo sapiens (human)]- Gene- NCBI. Accessed

May 19, 2024. https://www.ncbi.nlm.nih.gov/gene/3091

Prior SJ, Hagberg JM, Phares DA, et al. Sequence variation in hypoxia-inducible factor 1α ( HIF1A

): association with maximal oxygen consumption. Physiol Genomics. 2003;15(1):20-26.

doi:10.1152/physiolgenomics.00061.2003

Döring F, Onur S, Fischer A, et al. A common haplotype and the Pro582Ser polymorphism of the

hypoxia-inducible factor-1α (HIF1A) gene in elite endurance athletes. J Appl Physiol.

;108(6):1497-1500. doi:10.1152/japplphysiol.01165.2009

Lack of association between the GNB3 rs5443, HIF1A rs11549465 polymorphisms, physiological

and functional characteristics- Bosnyák- 2020- Annals of Human Genetics- Wiley Online Library.

Accessed May 19, 2024. https://onlinelibrary.wiley.com/doi/10.1111/ahg.12387

NOS3nitric oxide synthase 3 [Homo sapiens (human)]- Gene- NCBI. Accessed May 19, 2024.

https://www.ncbi.nlm.nih.gov/gene/4846

Drozdovska: Allelic polymorphism of endothelial NO-syntha...- Google Scholar. Accessed May 19,

https://scholar.google.com/scholar_lookup?title=Allelic+Polymorphism+of+Endothelial+No-Synthase

+(eNOS)+Association+with+Exercise-Induced+Hypoxia+Adaptation&author=Drozdovska,+S.B.&aut

hor=Dosenko,+V.E.&author=Ilyin,+V.N.&author=Filippov,+M.M.&author=Kuzmina,+L.M.&publication

_year=2009&journal=Baltic.+J.+Health+Phys.+Activ.&volume=1&pages=13%E2%80%9319&doi=1

2478/v10131-009-0001-1

Zmijewski P, Cięszczyk P, Ahmetov II, et al. The NOS3 G894T (rs1799983) and-786T/C

(rs2070744) polymorphisms are associated with elite swimmer status. Biol Sport

;35(4):313-319. doi:10.5114/biolsport.2018.76528

Gómez-Gallego F, Ruiz JR, Buxens A, et al. The −786 T/C polymorphism of the NOS3 gene is

associated with elite performance in power sports. Eur J Appl Physiol. 2009;107(5):565-569.

doi:10.1007/s00421-009-1166-7

PPARAperoxisome proliferator activated receptor alpha [Homo sapiens (human)]- Gene- NCBI.

Accessed May 19, 2024. https://www.ncbi.nlm.nih.gov/gene/5465

Akhmetov: Association of regulatory genes polymorphisms...- Google Scholar. Accessed May 19,

https://scholar.google.com/scholar_lookup?title=Association+of+regulatory+genes+polymorphisms+

with+aerobic+and+anaerobic+performance+of+athletes&author=Akhmetov,+I.I.&author=Popov,+D.

V.&author=Mozha%C4%ADskaia,+I.A.&author=Missina,+S.S.&author=Astratenkova,+I.V.&author=

Vinogradova,+O.L.&author=Rogozkin,+V.A.&publication_year=2007&journal=Ross.+Fiziol.+Zh.+Im.

+I.M.+Sechenova&volume=93&pages=837%E2%80%93843

Ahmetov II, Mozhayskaya IA, Flavell DM, et al. PPARα gene variation and physical performance in

Russian athletes. Eur J Appl Physiol. 2006;97(1):103-108. doi:10.1007/s00421-006-0154-4

Maciejewska A, Sawczuk M, Cięszczyk P. Variation in the PPARα gene in Polish rowers. J Sci Med

Sport. 2011;14(1):58-64. doi:10.1016/j.jsams.2010.05.006

Tural E, Kara N, Agaoglu SA, Elbistan M, Tasmektepligil MY, Imamoglu O. PPAR-α and PPARGC1A

gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol

Biol Rep. 2014;41(9):5799-5804. doi:10.1007/s11033-014-3453-6

PPARGC1APPARGcoactivator 1 alpha [Homo sapiens (human)]- Gene- NCBI. Accessed May

, 2024. https://www.ncbi.nlm.nih.gov/gene/10891

Lucia: PPARGC1A genotype (Gly482Ser) predicts exceptional...- Google Scholar. Accessed May

, 2024.

https://scholar.google.com/scholar_lookup?title=PPARGC1A+genotype+(Gly482Ser)+predicts+exce

ptional+endurance+capacity+in+European+men&author=Lucia,+A.&author=G%C3%B3mez-Galleg

o,+F.&author=Barroso,+I.&author=Rabad%C3%A1n,+M.&author=Bandr%C3%A9s,+F.&author=San

+Juan,+A.F.&author=Chicharro,+J.L.&author=Ekelund,+U.&author=Brage,+S.&author=Earnest,+C.

P.&publication_year=2005&journal=J.+Appl.+Physiol.&volume=99&pages=344%E2%80%93348&d

oi=10.1152/japplphysiol.00037.2005

Maciejewska A, Sawczuk M, Cieszczyk P, Mozhayskaya IA, Ahmetov II. The PPARGC1Agene

Gly482Ser in Polish and Russian athletes. J Sports Sci. 2012;30(1):101-113.

doi:10.1080/02640414.2011.623709

Mitochondrial DNA variation is associated with elite athletic status in the Polish population

Maruszak- 2014- Scandinavian Journal of Medicine & Science in Sports- Wiley Online Library.

Accessed May 19, 2024. https://onlinelibrary.wiley.com/doi/10.1111/sms.12012

HeZH, HuY, Li YC, et al. PGC-related gene variants and elite endurance athletic status in a

Chinese cohort: A functional study. Scand J Med Sci Sports. 2015;25(2):184-195.

doi:10.1111/sms.12188

Hall ECR, Lockey SJ, Heffernan SM, et al. The PPARGC1A Gly482Ser polymorphism is associated

with elite long-distance running performance. J Sports Sci. 2023;41(1):56-62.

doi:10.1080/02640414.2023.2195737

Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci

AMS. 2015;11(6):1164-1178. doi:10.5114/aoms.2015.56342

Guilherme JPLF, Semenova EA, Borisov OV, et al. The BDNF-Increasing Allele is Associated With

Increased Proportion of Fast-Twitch Muscle Fibers, Handgrip Strength, and Power Athlete Status. J

Strength Cond Res. 2022;36(7):1884-1889. doi:10.1519/JSC.0000000000003756

PubChem. EPOR- erythropoietin receptor (human). Accessed June 19, 2024.

https://pubchem.ncbi.nlm.nih.gov/gene/EPOR/human

Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis.- PMC.

Accessed June 9, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC46538/

Introduction to the Muscular System | SEER Training. Accessed May 10, 2024.

https://training.seer.cancer.gov/anatomy/muscular/

Ripa R, George T, Shumway KR, Sattar Y. Physiology, Cardiac Muscle. In: StatPearls. StatPearls

Publishing; 2024. Accessed May 10, 2024. http://www.ncbi.nlm.nih.gov/books/NBK572070/

McCuller C, Jessu R, Callahan AL. Physiology, Skeletal Muscle. In: StatPearls. StatPearls

Publishing; 2024. Accessed May 10, 2024. http://www.ncbi.nlm.nih.gov/books/NBK537139/

Hafen BB, Shook M, Burns B. Anatomy, Smooth Muscle. In: StatPearls. StatPearls Publishing;

Accessed May 10, 2024. http://www.ncbi.nlm.nih.gov/books/NBK532857/

Muscle Types | SEER Training. Accessed May 10, 2024.

https://training.seer.cancer.gov/anatomy/muscular/types.html

Scott W, Stevens J, Binder–Macleod SA. Human Skeletal Muscle Fiber Type Classifications. Phys

Ther. 2001;81(11):1810-1816. doi:10.1093/ptj/81.11.1810

Ji Z. The Ultimate Athlete: Genetics Vs. Training. Rak J, ed. SHS Web Conf. 2023;157:04017.

doi:10.1051/shsconf/202315704017

Harber MP, Gallagher PM, Creer AR, Minchev KM, Trappe SW. Single muscle fiber contractile

properties during a competitive season in male runners. Am J Physiol Regul Integr Comp Physiol.

;287(5):R1124-1131. doi:10.1152/ajpregu.00686.2003

Harber M, Trappe S. Single muscle fiber contractile properties of young competitive distance

runners. J Appl Physiol Bethesda Md 1985. 2008;105(2):629-636.

doi:10.1152/japplphysiol.00995.2007

Semenova EA, Zempo H, Miyamoto-Mikami E, et al. Genome-Wide Association Study Identifies

CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells. 2022;11(23):3910.

doi:10.3390/cells11233910

Wang X, Bove AM, Simone G, Ma B. Molecular Bases of VEGFR-2-Mediated Physiological

Function and Pathological Role. Front Cell Dev Biol. 2020;8. doi:10.3389/fcell.2020.599281

D’Errico I, Salvatore L, Murzilli S, et al. Peroxisome proliferator-activated receptor-γ coactivator 1-α

(PGC1α) is a metabolic regulator of intestinal epithelial cell fate. Proc Natl Acad Sci.

;108(16):6603-6608. doi:10.1073/pnas.1016354108

Desvergne B, Wahli W. Peroxisome Proliferator-Activated Receptors: Nuclear Control of

Metabolism*. Endocr Rev. 1999;20(5):649-688. doi:10.1210/edrv.20.5.0380

ACTN3- an overview | ScienceDirect Topics. Accessed May 20, 2024.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/actn3

Zhang B, Tanaka H, Shono N, et al. The I allele of the angiotensin-converting enzyme gene is

associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin

Genet. 2003;63(2):139-144. doi:10.1034/j.1399-0004.2003.00029.x

Kumagai H, Tobina T, Ichinoseki-Sekine N, et al. Role of selected polymorphisms in determining

muscle fiber composition in Japanese men and women. J Appl Physiol Bethesda Md 1985.

;124(5):1377-1384. doi:10.1152/japplphysiol.00953.2017

Ma F, Yang Y, Li X, et al. The Association of Sport Performance with ACE and ACTN3 Genetic

Polymorphisms: A Systematic Review and Meta-Analysis. PLoS ONE. 2013;8(1):e54685.

doi:10.1371/journal.pone.0054685

Eider J, Cieszczyk P, Ficek K, et al. The association between D allele of the ACE gene and power

performance in Polish elite athletes. Sci Sports. 2013;28(6):325-330.

doi:10.1016/j.scispo.2012.11.005

Wong MKS. Subchapter 42D- Angiotensin converting enzyme. In: Ando H, Ukena K, Nagata S,

eds. Handbook of Hormones (Second Edition). Academic Press; 2021:505-508.

doi:10.1016/B978-0-12-820649-2.00128-5

Fountain JH, Kaur J, Lappin SL. Physiology, Renin Angiotensin System. In: StatPearls. StatPearls

Publishing; 2024. Accessed May 20, 2024. http://www.ncbi.nlm.nih.gov/books/NBK470410/

Angiotensin-Converting Enzyme 2- an overview | ScienceDirect Topics. Accessed May 20, 2024.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/angiotensin-con

verting-enzyme-2

Singh KD, Karnik SS. Angiotensin Receptors: Structure, Function, Signaling and Clinical

Applications. J Cell Signal. 2016;1(2):111. doi:10.4172/jcs.1000111

Mustafina LJ, Naumov VA, Cieszczyk P, et al. AGTR2 gene polymorphism is associated with

muscle fibre composition, athletic status and aerobic performance. Exp Physiol.

;99(8):1042-1052. doi:10.1113/expphysiol.2014.079335

Ahmad Yusof H, Che Muhamed AM. Angiotensin-converting enzyme (ACE) insertion/deletion gene

polymorphism across ethnicity: a narrative review of performance gene. Sport Sci Health.

;17(1):57-77. doi:10.1007/s11332-020-00712-9

Thakur S, Sharma V, Kaur D, Purkait P. Angiotensin-Converting Enzyme (ACE) Insertion/Deletion

(I/D) Polymorphism as a Conjoint Regulator of Coagulation, Fibrinolytic, and RAAS Pathway in

Infertility and Associated Pregnancy Complications. J Renin-Angiotensin-Aldosterone Syst JRAAS.

;2022:1695769. doi:10.1155/2022/1695769

Vaughan D, Huber-Abel FA, Graber F, Hoppeler H, Flück M. The angiotensin converting enzyme

insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise. Eur

J Appl Physiol. 2013;113(7):1719-1729. doi:10.1007/s00421-012-2583-6

Papadimitriou ID, Lucia A, Pitsiladis YP, et al. ACTN3 R577X and ACE I/D gene variants influence

performance in elite sprinters: a multi-cohort study. BMC Genomics. 2016;17(1):285.

doi:10.1186/s12864-016-2462-3

Sensory Neuron- an overview | ScienceDirect Topics. Accessed May 24, 2024.

https://www.sciencedirect.com/topics/computer-science/sensory-neuron

Davidovits P. Chapter 13- Electricity. In: Davidovits P, ed. Physics in Biology and Medicine (Fifth

Edition). Academic Press; 2019:193-211. doi:10.1016/B978-0-12-813716-1.00013-6

Paruk T, Rauch L, Jankiewicz M, Van Breda K, Stein DJ, King M. Structural brain differences

between ultra-endurance athletes and sedentary persons. Sports Med Health Sci. 2020;2(2):89-94.

doi:10.1016/j.smhs.2020.05.004

Geisler M, de la Cruz F, Makris N, et al. Brains of endurance athletes differ in the association areas

but not in the primary areas. Psychophysiology. 2024;61(4):e14483. doi:10.1111/psyp.14483

Park IS, Lee YN, Kwon S, Lee NJ, Rhyu IJ. White matter plasticity in the cerebellum of elite

basketball athletes. Anat Cell Biol. 2015;48(4):262-267. doi:10.5115/acb.2015.48.4.262

Increased Cortical Thickness in Sports Experts: A Comparison of Diving Players with the Controls |

PLOS ONE. Accessed May 25, 2024.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017112

Müller S, Abernethy B, Farrow D. How do world-class cricket batsmen anticipate a bowler’s

intention? Q J Exp Psychol. Published online December 1, 2006. doi:10.1080/02643290600576595

Aglioti S, Cesari P, Romani M, Urgesi C. Action anticipation and motor resonance in elite basketball

players. Nat Neurosci. 2008;11:1109-1116. doi:10.1038/nn.2182

Kitazawa H, Hasegawa K, Aruga D, Tanaka M. Potential Genetic Contributions of the Central

Nervous System to a Predisposition to Elite Athletic Traits: State-of-the-Art and Future

Perspectives. Genes. 2021;12(3). doi:10.3390/genes12030371

DRD2 dopamine receptor D2 [Homo sapiens (human)]- Gene- NCBI. Accessed May 26, 2024.

https://www.ncbi.nlm.nih.gov/gene/1813

Jacob Y, Chivers P, Anderton RS. Genetic predictors of match performance in sub-elite Australian

football players: A pilot study. J Exerc Sci Fit. 2019;17(2):41-46. doi:10.1016/j.jesf.2018.10.007

Noohi F, Boyden NB, Kwak Y, et al. Association of COMT val158met and DRD2 G>T genetic

polymorphisms with individual differences in motor learning and performance in female young

adults. J Neurophysiol. 2014;111(3):628-640. doi:10.1152/jn.00457.2013

ADRB1 adrenoceptor beta 1 [Homo sapiens (human)]- Gene- NCBI. Accessed May 26, 2024.

https://www.ncbi.nlm.nih.gov/gene/153

Shi G, Xing L, Wu D, et al. A Rare Mutation of β1-Adrenergic Receptor Affects Sleep/Wake

Behaviors. Neuron. 2019;103(6):1044-1055.e7. doi:10.1016/j.neuron.2019.07.026

Peplonska B, Safranow K, Adamczyk J, et al. Association of serotoninergic pathway gene variants

with elite athletic status in the Polish population. J Sports Sci. 2019;37(14):1655-1662.

doi:10.1080/02640414.2019.1583156

FEV FEV transcription factor, ETS family member [Homo sapiens (human)]- Gene- NCBI.

Accessed May 26, 2024. https://www.ncbi.nlm.nih.gov/gene/54738

COMT catechol-O-methyltransferase [Homo sapiens (human)]- Gene- NCBI. Accessed May 26,

https://www.ncbi.nlm.nih.gov/gene/1312

PubChem. BDNF- brain derived neurotrophic factor (human). Accessed May 26, 2024.

https://pubchem.ncbi.nlm.nih.gov/gene/BDNF/human

Schor B, Silva SG da, Almeida AA de, Pereira C a. B, Arida RM. Plasma brain-derived neurotrophic

factor is higher after combat training (Randori) than incremental ramp test in elite judo athletes.

Braz J Med Biol Res Rev Bras Pesqui Medicas E Biol. 2019;52(4):e8154.

doi:10.1590/1414-431X20198154

Muñoz Ospina B, Cadavid-Ruiz N. The effect of aerobic exercise on serum brain-derived

neurotrophic factor (BDNF) and executive function in college students. Ment Health Phys Act.

;26:100578. doi:10.1016/j.mhpa.2024.100578

Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key

Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci. 2019;13.

doi:10.3389/fncel.2019.00363

Chakrapani S, Eskander N, De Los Santos LA, Omisore BA, Mostafa JA. Neuroplasticity and the

Biological Role of Brain Derived Neurotrophic Factor in the Pathophysiology and Management of

Depression. Cureus. 12(11):e11396. doi:10.7759/cureus.11396

Overney LS, Blanke O, Herzog MH. Enhanced Temporal but Not Attentional Processing in Expert

Tennis Players. PLoS ONE. 2008;3(6):e2380. doi:10.1371/journal.pone.0002380

Jäncke L, Koeneke S, Hoppe A, Rominger C, Hänggi J. The Architecture of the Golfer’s Brain.

PLoS ONE. 2009;4(3):e4785. doi:10.1371/journal.pone.0004785

Pittman RN. The Circulatory System and Oxygen Transport. In: Regulation of Tissue Oxygenation.

Morgan & Claypool Life Sciences; 2011. Accessed June 8, 2024.

https://www.ncbi.nlm.nih.gov/books/NBK54112/

Barbalato L, Pillarisetty LS. Histology, Red Blood Cell. In: StatPearls. StatPearls Publishing; 2024.

Accessed June 6, 2024. http://www.ncbi.nlm.nih.gov/books/NBK539702/

Normal red blood cells’ shape stabilized by membrane’s in-plane ordering | Scientific Reports.

Accessed June 8, 2024. https://www.nature.com/articles/s41598-019-56128-0

Tigner A, Ibrahim SA, Murray IV. Histology, White Blood Cell. In: StatPearls. StatPearls Publishing;

Accessed June 8, 2024. http://www.ncbi.nlm.nih.gov/books/NBK563148/

Williams O, Sergent SR. Histology, Platelets. In: StatPearls. StatPearls Publishing; 2024. Accessed

June 8, 2024. http://www.ncbi.nlm.nih.gov/books/NBK557800/

Heinicke K, Wolfarth B, Winchenbach P, et al. Blood volume and hemoglobin mass in elite athletes

of different disciplines. Int J Sports Med. 2001;22(7):504-512. doi:10.1055/s-2001-17613

Douglas PS, O’Toole M. Aging and physical activity determine cardiac structure and function in the

older athlete. J Appl Physiol Bethesda Md 1985. 1992;72(5):1969-1973.

doi:10.1152/jappl.1992.72.5.1969

Ahlgrim C, Birkner P, Seiler F, et al. Applying the Optimized CO Rebreathing Method for Measuring

Blood Volumes and Hemoglobin Mass in Heart Failure Patients. Front Physiol. 2018;9:1603.

doi:10.3389/fphys.2018.01603

Malczewska-Lenczowska J, Orysiak J, Majorczyk E, et al. Total Hemoglobin Mass, Aerobic

Capacity, and HBB Gene in Polish Road Cyclists. J Strength Cond Res. 2016;30(12):3512. 160. Juvonen E, Ikkala E, Fyhrquist F, Ruutu T. Autosomal dominant erythrocytosis caused by increased

sensitivity to erythropoietin. Blood. 1991;78(11):3066-3069.

Watowich SS. The Erythropoietin Receptor: Molecular Structure and Hematopoietic Signaling

Pathways. J Investig Med Off Publ Am Fed Clin Res. 2011;59(7):1067-1072.

doi:10.231/JIM.0b013e31820fb28c

Ma C, Cheng F, Wang X, et al. Erythropoietin Pathway: A Potential Target for the Treatment of

Depression. Int J Mol Sci. 2016;17(5):677. doi:10.3390/ijms17050677

Gangat N, Szuber N, Tefferi A. JAK2 unmutated erythrocytosis: 2023 Update on diagnosis and

management. Am J Hematol. 2023;98(6):965-981. doi:10.1002/ajh.26920

Keohane C, McMullin MF, Harrison C. The diagnosis and management of erythrocytosis. BMJ.

;347(nov18 1):f6667-f6667. doi:10.1136/bmj.f6667

Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood. 2017;130(16):1795-1799.

doi:10.1182/blood-2017-03-745349

Wenbo Z, Yan Z. The Uses of Anabolic Androgenic Steroids Among Athletes; Its Positive and

Negative Aspects- A Literature Review. J Multidiscip Healthc. 2023;16:4293-4305.

doi:10.2147/JMDH.S439384

Handelsman DJ. Performance Enhancing Hormone Doping in Sport. In: Feingold KR, Anawalt B,

Blackman MR, et al., eds. Endotext. MDText.com, Inc.; 2000. Accessed June 23, 2024.

http://www.ncbi.nlm.nih.gov/books/NBK305894/

Brain Sciences | Special Issue : Neurostimulation Techniques and Physical Exercise. Accessed

June 23, 2024. https://www.mdpi.com/journal/brainsci/special_issues/NE2S673Q1K

Neurostimulation - an overview | ScienceDirect Topics. Accessed June 23, 2024.

https://www.sciencedirect.com/topics/medicine-and-dentistry/neurostimulation

Bhasin S, Hatfield DL, Hoffman JR, et al. Anabolic-Androgenic Steroid Use in Sports, Health, and

Society. Med Sci Sports Exerc. 2021;53(8):1778. doi:10.1249/MSS.0000000000002670

Jones M, Tunstall Pedoe DS. Blood doping--a literature review. Br J Sports Med. 1989;23(2):84-88.

Johnson MD, Lim HH, Netoff TI, et al. Neuromodulation for Brain Disorders: Challenges and

Opportunities. IEEE Trans Biomed Eng. 2013;60(3):610-624. doi:10.1109/TBME.2013.2244890

Heydemann A, Siemionow M. A Brief Review of Duchenne Muscular Dystrophy Treatment Options,

with an Emphasis on Two Novel Strategies. Biomedicines. 2023;11(3):830.

doi:10.3390/biomedicines11030830

Hoy SM. Delandistrogene Moxeparvovec: First Approval. Drugs. 2023;83(14):1323-1329.

doi:10.1007/s40265-023-01929-x

Parums DV. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for

Sickle Cell Disease and Transfusion-Dependent β-Thalassemia. Med Sci Monit Int Med J Exp Clin

Res. 2024;30:e944204-1-e944204-4. doi:10.12659/MSM.944204

Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, De Lourdes Garza-Rodríguez M,

Barrera-Saldaña HA. Genome editing: A perspective on the application of CRISPR/Cas9 to study

human diseases (Review). Int J Mol Med. 2019;43(4):1559-1574. doi:10.3892/ijmm.2019.4112

Tournas L, Johnson W, Maynard A, Bowman D. GERMLINE DOPING FOR HEIGHTENED

PERFORMANCE IN SPORT.

2024list_en_final_22_september_2023.pdf. Accessed June 25, 2024.

https://www.wada-ama.org/sites/default/files/2023-09/2024list_en_final_22_september_2023.pdf

Schneider AJ, Friedmann T. The Problem of Doping in Sports. In: Advances in Genetics. Vol 51.

Gene Doping in Sports: The Science and Ethics of Genetically Modified Athletes. Academic Press;

:1-9. doi:10.1016/S0065-2660(06)51001-6

Palmi I, Berretta P, Tini A, Ricci G, Marinelli S. The unethicality of doping in sports. Clin Ter.

;170(2):e100-e101. doi:10.7417/CT.2019.2117

Downloads

Posted

2024-08-31

Categories