Preprint / Version 1

Monitoring Coronavirus at Local and Community Levels using an Environmental Surveillance Method

##article.authors##

  • Anthony Guan Magnet High School

DOI:

https://doi.org/10.58445/rars.1547

Keywords:

COVID-19, RT-qPCR, CT value, pandemic, RNA

Abstract

In the post-pandemic era, monitoring the community levels of coronavirus could help us evaluate the current risk of contracting COVID-19. In this study, I aimed to develop an alternative environmental surveillance tool for early detection of emerging SARS-CoV-2 variants and obtain the individual data to provide information to track the virus progression. In order to
rapidly detect viruses that may have been circulating in the community, I implemented a real-
time qPCR assay, which is a highly sensitive method able to detect and quantify trace amounts of live or dead COVID-19 virus RNA. Samples were collected from various public locations
around the highly populated Washington D.C. area. Via the analysis of the RT-qPCR results, I
found trace amounts of COVID-19 RNA in 11 out of 12 of these samples with cycle threshold
(C T ) values close to 40. Due to the very low positivity of the environmental samples, none of
them were deemed as containing enough viral RNA to imply the presence of infectious viruses.
However, the very low level of positive detection in these samples may reflect that our
environment is now contaminated with a low background level of viral RNA due to the global
pandemic. The results both suggest that this environmental surveillance method might be
applicable to monitoring the status of the virus spread and variants, as well as indicate that using a C T value of 40 as a cutoff to diagnose COVID-19 should be revised due to the increased
residual level of coronavirus RNA in our environment.

References

M. Cascella, M. Rajnik, A. Aleem, S. Dulebohn, & R. Napoli. Features, Evaluation, and

Treatment of Coronavirus (COVID-19). (2024).

https://www.ncbi.nlm.nih.gov/books/NBK554776/

F. Ahmad, J. Cisewski, A. Minino, & R. Anderson. Provisional Mortality Data - United States,

MMWR Morb Mortal Wkly Rep, 70(14), 519-522 (2021).

https://doi.org/10.15585/mmwr.mm7014e1

CDC. Summary of Variant Surveillance. CDC. Retrieved July 25 from (2024, July 19, 2024).

https://covid.cdc.gov/covid-data-tracker/#variant-summary

M. Cascella, M. Rajnik, A. Aleem, S.C. Dulebohn, & R. Di Napoli. (2024). Features,

Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls.

https://www.ncbi.nlm.nih.gov/pubmed/32150360

S. Jiang, C. Hillyer, & L. Du. Neutralizing Antibodies against SARS-CoV-2 and Other Human

Coronaviruses: (Trends in Immunology 41, 355-359; 2020). Trends Immunol, 41(6), 545

(2020). https://doi.org/10.1016/j.it.2020.04.008

S. Jiang, C. Hillyer, & L. Du. Neutralizing Antibodies against SARS-CoV-2 and Other Human

Coronaviruses. Trends Immunol, 41(5), 355-359 (2020).

https://doi.org/10.1016/j.it.2020.03.007

L. Du, Y. He, Y. Zhou, S. Liu, B.J. Zheng, & S. Jiang. The spike protein of SARS-CoV--a

target for vaccine and therapeutic development. Nat Rev Microbiol, 7(3), 226-236

(2009). https://doi.org/10.1038/nrmicro2090

A.K. Azkur, M. Akdis, D. Azkur, M. Sokolowska, W. van de Veen, M.C. Bruggen, L.

O'Mahony, Y. Gao, K. Nadeau, & C.A. Akdis. Immune response to SARS-CoV-2 and

mechanisms of immunopathological changes in COVID-19. Allergy, 75(7), 1564-1581

(2020). https://doi.org/10.1111/all.14364

J. Wang, M. Jiang, X. Chen, & L.J. Montaner. Cytokine storm and leukocyte changes in mild

versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and

emerging pathogenesis and therapy concepts. J Leukoc Biol, 108(1), 17-41 (2020).

https://doi.org/10.1002/JLB.3COVR0520-272R

S. Marquez, B. Prado-Vivar, J.J. Guadalupe, B. Gutierrez, M. Jibaja, M. Tobar, F. Mora, J.

Gaviria, M. Garcia, F. Espinosa, E. Ligna, J. Reyes, V. Barragan, P. Rojas-Silva, G.

Trueba, M. Grunauer, & P. Cardenas. Genome sequencing of the first SARS-CoV-2

reported from patients with COVID-19 in Ecuador. medRxiv (2020).

https://doi.org/10.1101/2020.06.11.20128330

H. Wani, S. Menon, D. Desai, N. D'Souza, Z. Bhathena, N. Desai, J.B. Rose, & S.

Shrivastava. Wastewater-Based Epidemiology of SARS-CoV-2: Assessing Prevalence

and Correlation with Clinical Cases. Food Environ Virol, 15(2), 131-143 (2023).

https://doi.org/10.1007/s12560-023-09555-2

J.E. Merrett, M. Nolan, L. Hartman, N. John, B. Flynn, L. Baker, C. Schang, D. McCarthy, D.

Lister, N.N. Cheng, N. Crosbie, R. Poon, & A. Jex. Highly sensitive wastewater

surveillance of SARS-CoV-2 variants by targeted next-generation amplicon sequencing

provides early warning of incursion in Victoria, Australia. Appl Environ Microbiol,

e0149723 (2024). https://doi.org/10.1128/aem.01497-23

K. Dai, S. Foerster, N.M. Vora, K. Blaney, C. Keeley, L. Hendricks, J.K. Varma, T. Long, J.

Shaman, & S. Pei. Community transmission of SARS-CoV-2 during the Delta wave in

New York City. BMC Infect Dis, 23(1), 753 (2023). https://doi.org/10.1186/s12879-023-

-6

S.S. Khandker, N.H.H. Nik Hashim, Z.Z. Deris, R.H. Shueb, & M.A. Islam. Diagnostic

Accuracy of Rapid Antigen Test Kits for Detecting SARS-CoV-2: A Systematic Review

and Meta-Analysis of 17,171 Suspected COVID-19 Patients. J Clin Med, 10(16) (2021).

https://doi.org/10.3390/jcm10163493

R.W. Peeling, D.L. Heymann, Y.Y. Teo, & P.J. Garcia. Diagnostics for COVID-19: moving

from pandemic response to control. Lancet, 399(10326), 757-768 (2022).

https://doi.org/10.1016/S0140-6736(21)02346-1

R. Raman, K.J. Patel, & K. Ranjan. COVID-19: Unmasking Emerging SARS-CoV-2

Variants, Vaccines and Therapeutic Strategies. Biomolecules, 11(7) (2021).

https://doi.org/10.3390/biom11070993

S. Chenchula, P. Karunakaran, S. Sharma, & M. Chavan. Current evidence on efficacy of

COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J

Med Virol, 94(7), 2969-2976 (2022). https://doi.org/10.1002/jmv.27697

P. Mazumder, S. Dash, R. Honda, C. Sonne, & M. Kumar. Sewage surveillance for SARS-

CoV-2: Molecular detection, quantification, and normalization factors. Curr Opin Environ

Sci Health, 28, 100363 (2022). https://doi.org/10.1016/j.coesh.2022.100363

X. Lu, L. Wang, S.K. Sakthivel, B. Whitaker, J. Murray, S. Kamili, B. Lynch, L. Malapati, S.A.

Burke, J. Harcourt, A. Tamin, N.J. Thornburg, J.M. Villanueva, & S. Lindstrom. US CDC

Real-Time Reverse Transcription PCR Panel for Detection of Severe Acute Respiratory

Syndrome Coronavirus 2. Emerg Infect Dis, 26(8), 1654-1665 (2020).

https://doi.org/10.3201/eid2608.201246

W. Klimstra, N. Tilston-Lunel, S. Nambulli, J. Boslett, C. McMillen, T. Gilliland, M.D. Dunn,

C. Sun, S. Wheeler, A. Wells, A. Hartman, A. McElroy, D.S. Reed, L. Rennick, & W.

Duprex. SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using

serum from acutely infected hospitalized COVID-19 patients. J Gen Virol, 101(11), 1156-

(2020). https://doi.org/10.1099/jgv.0.001481

E. Vicenzi, F. Canducci, D. Pinna, N. Mancini, S. Carletti, A. Lazzarin, C. Bordignon, G. Poli,

& M. Clementi. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg

Infect Dis, 10(3), 413-418 (2004). https://doi.org/10.3201/eid1003.030683

R. Sender, Y.M. Bar-On, S. Gleizer, B. Bernshtein, A. Flamholz, R. Phillips, & R. Milo. The

total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci U S A, 118(25)

(2021). https://doi.org/10.1073/pnas.2024815118

H.W. Despres, M.G. Mills, D.J. Shirley, M.M. Schmidt, M.L. Huang, P. Roychoudhury, K.R.

Jerome, A.L. Greninger, & E.A. Bruce. Measuring infectious SARS-CoV-2 in clinical

samples reveals a higher viral titer:RNA ratio for Delta and Epsilon vs. Alpha variants.

Proc Natl Acad Sci U S A, 119(5) (2022). https://doi.org/10.1073/pnas.2116518119

Y.Y. Chen, X. Shen, Y.J. Wang, J.W. Xie, Z.X. Fang, L.R. Lin, & T.C. Yang. Evaluation of

the cycle threshold values of RT-PCR for SARS-CoV-2 in COVID-19 patients in

predicting epidemic dynamics and monitoring surface contamination. J Infect Public

Health, 15(12), 1494-1496 (2022). https://doi.org/10.1016/j.jiph.2022.11.012

R. Markewitz, J. Dargvainiene, R. Junker, & K.P. Wandinger. Cycle threshold of SARS-CoV-

RT-PCR as a driver of retesting. Sci Rep, 14(1), 2423 (2024).

https://doi.org/10.1038/s41598-024-52984-7

CDC. Staying Up to Date with COVID-19 Vaccines. CDC. Retrieved Aug 9 from (2024, July

, 2024). https://www.cdc.gov/covid/vaccines/stay-up-to-date.html

Downloads

Posted

2024-08-31

Categories