Monitoring Coronavirus at Local and Community Levels using an Environmental Surveillance Method
DOI:
https://doi.org/10.58445/rars.1547Keywords:
COVID-19, RT-qPCR, CT value, pandemic, RNAAbstract
In the post-pandemic era, monitoring the community levels of coronavirus could help us evaluate the current risk of contracting COVID-19. In this study, I aimed to develop an alternative environmental surveillance tool for early detection of emerging SARS-CoV-2 variants and obtain the individual data to provide information to track the virus progression. In order to
rapidly detect viruses that may have been circulating in the community, I implemented a real-
time qPCR assay, which is a highly sensitive method able to detect and quantify trace amounts of live or dead COVID-19 virus RNA. Samples were collected from various public locations
around the highly populated Washington D.C. area. Via the analysis of the RT-qPCR results, I
found trace amounts of COVID-19 RNA in 11 out of 12 of these samples with cycle threshold
(C T ) values close to 40. Due to the very low positivity of the environmental samples, none of
them were deemed as containing enough viral RNA to imply the presence of infectious viruses.
However, the very low level of positive detection in these samples may reflect that our
environment is now contaminated with a low background level of viral RNA due to the global
pandemic. The results both suggest that this environmental surveillance method might be
applicable to monitoring the status of the virus spread and variants, as well as indicate that using a C T value of 40 as a cutoff to diagnose COVID-19 should be revised due to the increased
residual level of coronavirus RNA in our environment.
References
M. Cascella, M. Rajnik, A. Aleem, S. Dulebohn, & R. Napoli. Features, Evaluation, and
Treatment of Coronavirus (COVID-19). (2024).
https://www.ncbi.nlm.nih.gov/books/NBK554776/
F. Ahmad, J. Cisewski, A. Minino, & R. Anderson. Provisional Mortality Data - United States,
MMWR Morb Mortal Wkly Rep, 70(14), 519-522 (2021).
https://doi.org/10.15585/mmwr.mm7014e1
CDC. Summary of Variant Surveillance. CDC. Retrieved July 25 from (2024, July 19, 2024).
https://covid.cdc.gov/covid-data-tracker/#variant-summary
M. Cascella, M. Rajnik, A. Aleem, S.C. Dulebohn, & R. Di Napoli. (2024). Features,
Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls.
https://www.ncbi.nlm.nih.gov/pubmed/32150360
S. Jiang, C. Hillyer, & L. Du. Neutralizing Antibodies against SARS-CoV-2 and Other Human
Coronaviruses: (Trends in Immunology 41, 355-359; 2020). Trends Immunol, 41(6), 545
(2020). https://doi.org/10.1016/j.it.2020.04.008
S. Jiang, C. Hillyer, & L. Du. Neutralizing Antibodies against SARS-CoV-2 and Other Human
Coronaviruses. Trends Immunol, 41(5), 355-359 (2020).
https://doi.org/10.1016/j.it.2020.03.007
L. Du, Y. He, Y. Zhou, S. Liu, B.J. Zheng, & S. Jiang. The spike protein of SARS-CoV--a
target for vaccine and therapeutic development. Nat Rev Microbiol, 7(3), 226-236
(2009). https://doi.org/10.1038/nrmicro2090
A.K. Azkur, M. Akdis, D. Azkur, M. Sokolowska, W. van de Veen, M.C. Bruggen, L.
O'Mahony, Y. Gao, K. Nadeau, & C.A. Akdis. Immune response to SARS-CoV-2 and
mechanisms of immunopathological changes in COVID-19. Allergy, 75(7), 1564-1581
(2020). https://doi.org/10.1111/all.14364
J. Wang, M. Jiang, X. Chen, & L.J. Montaner. Cytokine storm and leukocyte changes in mild
versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and
emerging pathogenesis and therapy concepts. J Leukoc Biol, 108(1), 17-41 (2020).
https://doi.org/10.1002/JLB.3COVR0520-272R
S. Marquez, B. Prado-Vivar, J.J. Guadalupe, B. Gutierrez, M. Jibaja, M. Tobar, F. Mora, J.
Gaviria, M. Garcia, F. Espinosa, E. Ligna, J. Reyes, V. Barragan, P. Rojas-Silva, G.
Trueba, M. Grunauer, & P. Cardenas. Genome sequencing of the first SARS-CoV-2
reported from patients with COVID-19 in Ecuador. medRxiv (2020).
https://doi.org/10.1101/2020.06.11.20128330
H. Wani, S. Menon, D. Desai, N. D'Souza, Z. Bhathena, N. Desai, J.B. Rose, & S.
Shrivastava. Wastewater-Based Epidemiology of SARS-CoV-2: Assessing Prevalence
and Correlation with Clinical Cases. Food Environ Virol, 15(2), 131-143 (2023).
https://doi.org/10.1007/s12560-023-09555-2
J.E. Merrett, M. Nolan, L. Hartman, N. John, B. Flynn, L. Baker, C. Schang, D. McCarthy, D.
Lister, N.N. Cheng, N. Crosbie, R. Poon, & A. Jex. Highly sensitive wastewater
surveillance of SARS-CoV-2 variants by targeted next-generation amplicon sequencing
provides early warning of incursion in Victoria, Australia. Appl Environ Microbiol,
e0149723 (2024). https://doi.org/10.1128/aem.01497-23
K. Dai, S. Foerster, N.M. Vora, K. Blaney, C. Keeley, L. Hendricks, J.K. Varma, T. Long, J.
Shaman, & S. Pei. Community transmission of SARS-CoV-2 during the Delta wave in
New York City. BMC Infect Dis, 23(1), 753 (2023). https://doi.org/10.1186/s12879-023-
-6
S.S. Khandker, N.H.H. Nik Hashim, Z.Z. Deris, R.H. Shueb, & M.A. Islam. Diagnostic
Accuracy of Rapid Antigen Test Kits for Detecting SARS-CoV-2: A Systematic Review
and Meta-Analysis of 17,171 Suspected COVID-19 Patients. J Clin Med, 10(16) (2021).
https://doi.org/10.3390/jcm10163493
R.W. Peeling, D.L. Heymann, Y.Y. Teo, & P.J. Garcia. Diagnostics for COVID-19: moving
from pandemic response to control. Lancet, 399(10326), 757-768 (2022).
https://doi.org/10.1016/S0140-6736(21)02346-1
R. Raman, K.J. Patel, & K. Ranjan. COVID-19: Unmasking Emerging SARS-CoV-2
Variants, Vaccines and Therapeutic Strategies. Biomolecules, 11(7) (2021).
https://doi.org/10.3390/biom11070993
S. Chenchula, P. Karunakaran, S. Sharma, & M. Chavan. Current evidence on efficacy of
COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J
Med Virol, 94(7), 2969-2976 (2022). https://doi.org/10.1002/jmv.27697
P. Mazumder, S. Dash, R. Honda, C. Sonne, & M. Kumar. Sewage surveillance for SARS-
CoV-2: Molecular detection, quantification, and normalization factors. Curr Opin Environ
Sci Health, 28, 100363 (2022). https://doi.org/10.1016/j.coesh.2022.100363
X. Lu, L. Wang, S.K. Sakthivel, B. Whitaker, J. Murray, S. Kamili, B. Lynch, L. Malapati, S.A.
Burke, J. Harcourt, A. Tamin, N.J. Thornburg, J.M. Villanueva, & S. Lindstrom. US CDC
Real-Time Reverse Transcription PCR Panel for Detection of Severe Acute Respiratory
Syndrome Coronavirus 2. Emerg Infect Dis, 26(8), 1654-1665 (2020).
https://doi.org/10.3201/eid2608.201246
W. Klimstra, N. Tilston-Lunel, S. Nambulli, J. Boslett, C. McMillen, T. Gilliland, M.D. Dunn,
C. Sun, S. Wheeler, A. Wells, A. Hartman, A. McElroy, D.S. Reed, L. Rennick, & W.
Duprex. SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using
serum from acutely infected hospitalized COVID-19 patients. J Gen Virol, 101(11), 1156-
(2020). https://doi.org/10.1099/jgv.0.001481
E. Vicenzi, F. Canducci, D. Pinna, N. Mancini, S. Carletti, A. Lazzarin, C. Bordignon, G. Poli,
& M. Clementi. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg
Infect Dis, 10(3), 413-418 (2004). https://doi.org/10.3201/eid1003.030683
R. Sender, Y.M. Bar-On, S. Gleizer, B. Bernshtein, A. Flamholz, R. Phillips, & R. Milo. The
total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci U S A, 118(25)
(2021). https://doi.org/10.1073/pnas.2024815118
H.W. Despres, M.G. Mills, D.J. Shirley, M.M. Schmidt, M.L. Huang, P. Roychoudhury, K.R.
Jerome, A.L. Greninger, & E.A. Bruce. Measuring infectious SARS-CoV-2 in clinical
samples reveals a higher viral titer:RNA ratio for Delta and Epsilon vs. Alpha variants.
Proc Natl Acad Sci U S A, 119(5) (2022). https://doi.org/10.1073/pnas.2116518119
Y.Y. Chen, X. Shen, Y.J. Wang, J.W. Xie, Z.X. Fang, L.R. Lin, & T.C. Yang. Evaluation of
the cycle threshold values of RT-PCR for SARS-CoV-2 in COVID-19 patients in
predicting epidemic dynamics and monitoring surface contamination. J Infect Public
Health, 15(12), 1494-1496 (2022). https://doi.org/10.1016/j.jiph.2022.11.012
R. Markewitz, J. Dargvainiene, R. Junker, & K.P. Wandinger. Cycle threshold of SARS-CoV-
RT-PCR as a driver of retesting. Sci Rep, 14(1), 2423 (2024).
https://doi.org/10.1038/s41598-024-52984-7
CDC. Staying Up to Date with COVID-19 Vaccines. CDC. Retrieved Aug 9 from (2024, July
, 2024). https://www.cdc.gov/covid/vaccines/stay-up-to-date.html
Downloads
Posted
Categories
License
Copyright (c) 2024 Anthony Guan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.