Preprint / Version 1

Navigating IBD: The Role of Environmental Stressors and Nutrition

##article.authors##

  • Nikhil Kannan High School

DOI:

https://doi.org/10.58445/rars.1523

Keywords:

IBD, Nutrition, Environmental Stressors

Abstract

IBD is an umbrella term to describe chronic inflammatory disorders that affect the GI tract. The primary disorders are Crohn’s Disease (CD) and ulcerative colitis (UC). Broadly, differences between the two diseases depend on what part of the gut is inflamed; CD affects any segment of the GI tract, usually in the ileum, whereas ulcerative colitis inflammation is concentrated in the colon and rectum. Symptoms of both diseases include abdominal pain with diarrhea and systemic manifestations such as fatigue and fever. Although genetic predisposition is associated, environmental factors include diet and pollution. This article will discuss the symptoms, treatments, genetics, and environmental stressors related to IBD and what current therapeutic options are available to treat the diseases.

References

THE FACTS ABOUT Inflammatory Bowel Diseases. (2014, November). Crohn’s & Colitis Foundation of America. https://www.crohnscolitisfoundation.org/sites/default/files/2019-02/Updated%20IBD%20Factbook.pdf

Crohn’s Disease. (2023, January 13). PennMedicine. https://www.pennmedicine.org/for-patients-and-visitors/patient-information/conditions-treated-a-to-z/crohns-disease#:~:text=The%20exact%20cause%20of%20Crohn,body%20tissue%20(autoimmune%20disorder)

Brody, Barbara. (2022, May 19). 5 things we now know about Crohn’s disease. Johnson&Johnson. https://www.jnj.com/health-and-wellness/things-we-now-know-about-crohns-disease

gastrointestinal tract. (n.d.). National Cancer Institute. Retrieved August 7, 2024, from https://www.cancer.gov/publications/dictionaries/cancer-terms/def/gastrointestinal-tract

Digestive System. (2021). Cleveland Clinic. https://my.clevelandclinic.org/health/body/7041-digestive-system

di Vincenzo, F., del Gaudio, A., Petito, V., Lopetuso, L. R., & Scaldaferri, F. (2024). Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Internal and Emergency Medicine, 19(2), 275–293. https://doi.org/10.1007/s11739-023-03374-w

Inflammatory Bowel Disease (Overview). (2024). Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/15587-inflammatory-bowel-disease-overview

Inflammatory Bowel Disease (IBD) Basics. (2024, June 21). CDC. https://www.cdc.gov/inflammatory-bowel-disease/about/index.html

Kim, E. R. (2014). Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World Journal of Gastroenterology, 20(29), 9872. https://doi.org/10.3748/wjg.v20.i29.9872

Chaudhry, T. S., Senapati, S. G., Gadam, S., Mannam, H. P. S. S., Voruganti, H. V., Abbasi, Z., Abhinav, T., Challa, A. B., Pallipamu, N., Bheemisetty, N., & Arunachalam, S. P. (2023). The Impact of Microbiota on the Gut–Brain Axis: Examining the Complex Interplay and Implications. Journal of Clinical Medicine, 12(16), 5231. https://doi.org/10.3390/jcm12165231

Mental health and wellbeing. (2023). Crohn’s & Colitis UK. https://crohnsandcolitis.org.uk/info-support/information-about-crohns-and-colitis/all-information-about-crohns-and-colitis/living-with-crohns-or-colitis/mental-health-and-wellbeing#:~:text=Research%20suggests%20that%20people%20living,mental%20health%20in%20some%20way

Complications and Extraintestinal Manifestations. (n.d.). Chron’s and Colitis Canda. Retrieved August 7, 2024, from https://crohnsandcolitis.ca/About-Crohn-s-Colitis/IBD-Journey/Complications-and-Extraintestinal-Manifestations/Stress,-Anxiety,-and-Depression

Faubion, William. (2020). Inflammatory bowel disease (IBD). Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/inflammatory-bowel-disease/diagnosis-treatment/drc-20353320

Stress. (2023, February 21). World Health Organization. https://www.who.int/news-room/questions-and-answers/item/stress

Tee-Melegrito, R. A. (2023, May 5). Cortisol and stress: What is the connection? MedicalNewsToday. https://www.medicalnewstoday.com/articles/cortisol-and-stress

Depression. (n.d.). National Institute of Mental Health. Retrieved August 7, 2024, from https://www.nimh.nih.gov/health/topics/depression#:~:text=Because%20depression%20tends%20to%20make,symptoms%20may%20benefit%20from%20treatment

Simmons, W. K., Burrows, K., Avery, J. A., Kerr, K. L., Bodurka, J., Savage, C. R., & Drevets, W. C. (2016). Depression-Related Increases and Decreases in Appetite: Dissociable Patterns of Aberrant Activity in Reward and Interoceptive Neurocircuitry. American Journal of Psychiatry, 173(4), 418–428. https://doi.org/10.1176/appi.ajp.2015.15020162

Butler, M. J., Perrini, A. A., & Eckel, L. A. (2021). The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients, 13(2), 500. https://doi.org/10.3390/nu13020500

Cardoso, H. M., Nunes, A. C. R. M., Cruz, A. M., Santos, C. C. M., & Veloso, F. T. P. (2006, September). Importance of Serum Cortisol Levels in Inflammatory Bowel Disease. American Journal of Gastroenterology. https://journals.lww.com/ajg/fulltext/2006/09001/importance_of_serum_cortisol_levels_in.1197.aspx#:~:text=Conclusions%3A%20In%20IBD%2C%20increased%20cortisol,related%20to%20more%20severe%20IBD

Thau, L., Gandhi, J., & Sharma, S. (2024). Physiology, Cortisol.

Bohn, K. (2021, March 22). Living a stress-free life may have benefits, but also a downside. PennState.

Ge, L., Liu, S., Li, S., Yang, J., Hu, G., Xu, C., & Song, W. (2022). Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.1016578

Eugenicos, M. P., & Ferreira, N. B. (2021). Psychological factors associated with inflammatory bowel disease. British Medical Bulletin, 138(1), 16–28. https://doi.org/10.1093/bmb/ldab010

Bertani, L., Ribaldone, D. G., Bellini, M., Mumolo, M. G., & Costa, F. (2021). Inflammatory Bowel Diseases: Is There a Role for Nutritional Suggestions? Nutrients, 13(4), 1387. https://doi.org/10.3390/nu13041387

Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1), 73. https://doi.org/10.1186/s12967-017-1175-y

Lu, Y. (2011). Inflammatory bowel disease in adolescents: What problems does it pose? World Journal of Gastroenterology, 17(10), 2691. https://doi.org/10.3748/wjg.v17.i22.2691

Amaro, F., & Chiarelli, F. (2020). Growth and Puberty in Children with Inflammatory Bowel Diseases. Biomedicines, 8(11), 458. https://doi.org/10.3390/biomedicines8110458

Cooney, R., Tang, D., Barrett, K., & Russell, R. K. (2024). Children and Young Adults With Inflammatory Bowel Disease Have an Increased Incidence and Risk of Developing Mental Health Conditions: A UK Population-Based Cohort Study. Inflammatory Bowel Diseases, 30(8), 1264–1273. https://doi.org/10.1093/ibd/izad169

Nguyen, N. H., Khera, R., Ohno-Machado, L., Sandborn, W. J., & Singh, S. (2021). Prevalence and Effects of Food Insecurity and Social Support on Financial Toxicity in and Healthcare Use by Patients With Inflammatory Bowel Diseases. Clinical Gastroenterology and Hepatology, 19(7), 1377-1386.e5. https://doi.org/10.1016/j.cgh.2020.05.056

Courage, K. H. (2022, April 8). The Connection Between IBD and Aging. TIME. https://time.com/6165526/ibd-and-aging/

Axenfeld, E., Katz, S., & Faye, A. S. (2023). Management Considerations for the Older Adult With Inflammatory Bowel Disease. Gastroenterology & Hepatology, 19(10), 592–599.

Chrobak-Bień, J., Marciniak, A., Kozicka, I., Lakoma Kuiken, A., Włodarczyk, M., Sobolewska-Włodarczyk, A., Ignaczak, A., & Borowiak, E. (2023). Quality of Life in Patients over Age 65 after Intestinal Ostomy Creation as Treatment of Large Intestine Disease. International Journal of Environmental Research and Public Health, 20(3), 1749. https://doi.org/10.3390/ijerph20031749

Katz, S., & Feldstein, R. (2008). Inflammatory bowel disease of the elderly: a wake-up call. Gastroenterology & Hepatology, 4(5), 337–347.

Ananthakrishnan, A. N. (2021). Frailty in Patients With Inflammatory Bowel Disease. Gastroenterology & Hepatology, 17(6), 263–268.

DeBruyn, J. (2023, September 28). Your microbes live on after you die − a microbiologist explains how your necrobiome recycles your body to nourish new life. THE CONVERSATION.

Commensalism. (n.d.). ScienceDirect. Retrieved August 7, 2024, from https://www.sciencedirect.com/topics/medicine-and-dentistry/commensalism#:~:text=Commensalism%20is%20a%20long%2Dterm,the%20host%20in%20many%20ways

Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30(6), 492–506. https://doi.org/10.1038/s41422-020-0332-7

Martín, R., Miquel, S., Ulmer, J., Kechaou, N., Langella, P., & Bermúdez-Humarán, L. G. (2013). Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microbial Cell Factories, 12(1), 71. https://doi.org/10.1186/1475-2859-12-71

Belizário, J. E., & Napolitano, M. (2015). Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01050

Sun, Y., Zhang, S., Nie, Q., He, H., Tan, H., Geng, F., Ji, H., Hu, J., & Nie, S. (2023). Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Critical Reviews in Food Science and Nutrition, 63(33), 12073–12088. https://doi.org/10.1080/10408398.2022.2098249

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474

Actinobacteria. (n.d.). ScienceDirect. Retrieved August 7, 2024, from https://www.sciencedirect.com/topics/medicine-and-dentistry/actinobacteria#:~:text=Actinobacteria%20are%20gram%20positive%2C%20multiple,the%20human%20gut%20are%20Bifidobacteria

Lind, E. (2019, June). Actinobacteria. National Park Service. https://www.nps.gov/articles/actinobacteria.htm#:~:text=Actinobacteria%20produce%20secondary%20metabolites%E2%80%94organic,%2C%20antifungal%2C%20and%20anticancer%20qualities

Binda, C., Lopetuso, L. R., Rizzatti, G., Gibiino, G., Cennamo, V., & Gasbarrini, A. (2018). Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 50(5), 421–428. https://doi.org/10.1016/j.dld.2018.02.012

Bacteroides. (n.d.). Retrieved August 8, 2024, from https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bacteroides#:~:text=Bacteroides%20is%20essential%20in%20dietary%20fiber%20metabolism%20and%20gut%20microbiota%20interaction.&text=The%20interplay%20between%20gut%20microbiota,biological%20benefits%20on%20host%20health.&text=Dietary%20fiber%20also%20affects%20host%20through%20gut%20microbiota%2Dindependent%20pathways

Zamani, S., Hesam Shariati, S., Zali, M. R., Asadzadeh Aghdaei, H., Sarabi Asiabar, A., Bokaie, S., Nomanpour, B., Sechi, L. A., & Feizabadi, M. M. (2017). Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathogens, 9(1), 53. https://doi.org/10.1186/s13099-017-0202-0

Ogunrinola, G. A., Oyewale, J. O., Oshamika, O. O., & Olasehinde, G. I. (2020). The Human Microbiome and Its Impacts on Health. International Journal of Microbiology, 2020, 1–7. https://doi.org/10.1155/2020/8045646

Shan, Y., Lee, M., & Chang, E. B. (2022). The Gut Microbiome and Inflammatory Bowel Diseases. Annual Review of Medicine, 73(1), 455–468. https://doi.org/10.1146/annurev-med-042320-021020

Pandey, H., Jain, D., Tang, D. W. T., Wong, S. H., & Lal, D. (2024). Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intestinal Research, 22(1), 15–43. https://doi.org/10.5217/ir.2023.00080

Martín, R., Rios-Covian, D., Huillet, E., Auger, S., Khazaal, S., Bermúdez-Humarán, L. G., Sokol, H., Chatel, J.-M., & Langella, P. (2023). Faecalibacterium : a bacterial genus with promising human health applications. FEMS Microbiology Reviews, 47(4). https://doi.org/10.1093/femsre/fuad039

Zeng, M. Y., Inohara, N., & Nuñez, G. (2017). Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunology, 10(1), 18–26. https://doi.org/10.1038/mi.2016.75

Zhao, M., Chu, J., Feng, S., Guo, C., Xue, B., He, K., & Li, L. (2023). Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomedicine & Pharmacotherapy, 164, 114985. https://doi.org/10.1016/j.biopha.2023.114985

Fusco, W., Lorenzo, M. B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., Lener, E., Mele, M. C., Gasbarrini, A., Collado, M. C., Cammarota, G., & Ianiro, G. (2023). Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15(9), 2211. https://doi.org/10.3390/nu15092211

Ney, L.-M., Wipplinger, M., Grossmann, M., Engert, N., Wegner, V. D., & Mosig, A. S. (2023). Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biology, 13(3). https://doi.org/10.1098/rsob.230014

He, J., Li, H., Jia, J., Liu, Y., Zhang, N., Wang, R., Qu, W., Liu, Y., & Jia, L. (2023). Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. Molecular Biomedicine, 4(1), 45. https://doi.org/10.1186/s43556-023-00157-9

Chancharoenthana, W., Kamolratanakul, S., Schultz, M. J., & Leelahavanichkul, A. (2023). The leaky gut and the gut microbiome in sepsis – targets in research and treatment. Clinical Science, 137(8), 645–662. https://doi.org/10.1042/CS20220777

Santana, P. T., Rosas, S. L. B., Ribeiro, B. E., Marinho, Y., & de Souza, H. S. P. (2022). Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. International Journal of Molecular Sciences, 23(7), 3464. https://doi.org/10.3390/ijms23073464

Gyriki, D., Nikolaidis, C., Stavropoulou, E., Bezirtzoglou, I., Tsigalou, C., Vradelis, S., & Bezirtzoglou, E. (2024). Exploring the Gut Microbiome’s Role in Inflammatory Bowel Disease: Insights and Interventions. Journal of Personalized Medicine, 14(5), 507. https://doi.org/10.3390/jpm14050507

Belkaid, Y., & Hand, T. W. (2014). Role of the Microbiota in Immunity and Inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011

Zhang, J.-M., & An, J. (2007). Cytokines, Inflammation, and Pain. International Anesthesiology Clinics, 45(2), 27–37. https://doi.org/10.1097/AIA.0b013e318034194e

Lechuga, S., Braga-Neto, M. B., Naydenov, N. G., Rieder, F., & Ivanov, A. I. (2023). Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1108289

Liévin-Le Moal, V., & Servin, A. L. (2013). Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines. Microbiology and Molecular Biology Reviews, 77(3), 380–439. https://doi.org/10.1128/MMBR.00064-12

Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sánchez-Martinez, H., & Gonzalez-Granado, J. M. (2023). Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. International Journal of Molecular Sciences, 24(2), 1526. https://doi.org/10.3390/ijms24021526

Ji, J., Jin, W., Liu, S., Jiao, Z., & Li, X. (2023). Probiotics, prebiotics, and postbiotics in health and disease. MedComm, 4(6). https://doi.org/10.1002/mco2.420

Portincasa, P., Bonfrate, L., Vacca, M., de Angelis, M., Farella, I., Lanza, E., Khalil, M., Wang, D. Q.-H., Sperandio, M., & di Ciaula, A. (2022). Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 23(3), 1105. https://doi.org/10.3390/ijms23031105

Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A., & Cominelli, F. (2020). Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Translational Research, 226, 1–11. https://doi.org/10.1016/j.trsl.2020.05.008

Qiu, P., Ishimoto, T., Fu, L., Zhang, J., Zhang, Z., & Liu, Y. (2022). The Gut Microbiota in Inflammatory Bowel Disease. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.733992

Fakharian, F., Thirugnanam, S., Welsh, D. A., Kim, W.-K., Rappaport, J., Bittinger, K., & Rout, N. (2023). The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms, 11(7), 1849. https://doi.org/10.3390/microorganisms11071849

el Hadad, J., Schreiner, P., Vavricka, S. R., & Greuter, T. (2024). The Genetics of Inflammatory Bowel Disease. Molecular Diagnosis & Therapy, 28(1), 27–35. https://doi.org/10.1007/s40291-023-00678-7

Korta, A., Kula, J., & Gomułka, K. (2023). The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. International Journal of Molecular Sciences, 24(12), 10172. https://doi.org/10.3390/ijms241210172

McGeachy, M. J., Cua, D. J., & Gaffen, S. L. (2019). The IL-17 Family of Cytokines in Health and Disease. Immunity, 50(4), 892–906. https://doi.org/10.1016/j.immuni.2019.03.021

Mills, K. H. G. (2023). IL-17 and IL-17-producing cells in protection versus pathology. Nature Reviews Immunology, 23(1), 38–54. https://doi.org/10.1038/s41577-022-00746-9

Sewell, G. W., & Kaser, A. (2022). Interleukin-23 in the Pathogenesis of Inflammatory Bowel Disease and Implications for Therapeutic Intervention. Journal of Crohn’s and Colitis, 16(Supplement_2), ii3–ii19. https://doi.org/10.1093/ecco-jcc/jjac034

Keestra-Gounder, A. M., & Tsolis, R. M. (2017). NOD1 and NOD2: Beyond Peptidoglycan Sensing. Trends in Immunology, 38(10), 758–767. https://doi.org/10.1016/j.it.2017.07.004

Balasubramanian, I., & Gao, N. (2017). From sensing to shaping microbiota: insights into the role of NOD2 in intestinal homeostasis and progression of Crohn’s disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 313(1), G7–G13. https://doi.org/10.1152/ajpgi.00330.2016

Ashton, J. J., Seaby, E. G., Beattie, R. M., & Ennis, S. (2023). NOD2 in Crohn’s Disease—Unfinished Business. Journal of Crohn’s and Colitis, 17(3), 450–458. https://doi.org/10.1093/ecco-jcc/jjac124

NOD2 nucleotide binding oligomerization domain containing 2 [ Homo sapiens (human) ]. (2024, July 29). National Library of Medicine. https://www.ncbi.nlm.nih.gov/gene/64127

Lauro, M. L., Burch, J. M., & Grimes, C. L. (2016). The effect of NOD2 on the microbiota in Crohn’s disease. Current Opinion in Biotechnology, 40, 97–102. https://doi.org/10.1016/j.copbio.2016.02.028

Histocompatibility antigen test. (2023). MedlinePlus. https://medlineplus.gov/ency/article/003550.htm#:~:text=These%20are%20found%20on%20the,not%20from%20your%20own%20body

HLA-B gene. (n.d.). MedlinePlus. Retrieved August 8, 2024, from https://medlineplus.gov/genetics/gene/hla-b/#references

Cruz-Tapias, P., Castiblanco, J., & Anaya, J.-M. (2013). HLA Association with Autoimmune Diseases (J. Anaya, Y. Schonfeld, & A. Rojas-Villarraga, Eds.). National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK459459/

Nordquist, H., & Jamil, R. T. (2024). Biochemistry, HLA Antigens. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK546662/

Stokkers, P. C. F., Reitsma, P. H., Tytgat, G. N. J., & van Deventer, S. J. H. (1999). HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut, 45(3), 395–401. https://doi.org/10.1136/gut.45.3.395

Groundbreaking Study Led by the Crohn’s & Colitis Foundation Estimates Nearly 1 in 100 Americans Has Inflammatory Bowel Disease (IBD). (2023, July 20). Chron’s and Colitis Foundation. https://www.crohnscolitisfoundation.org/groundbreaking-study-led-the-crohns-colitis-foundation-estimates-nearly-1-100-americans-has#:~:text=Importantly%2C%20the%20study%20found%20significant,times%20higher%20than%20Asian%20Americans

Caviglia, G. P., Garrone, A., Bertolino, C., Vanni, R., Bretto, E., Poshnjari, A., Tribocco, E., Frara, S., Armandi, A., Astegiano, M., Saracco, G. M., Bertolusso, L., & Ribaldone, D. G. (2023). Epidemiology of Inflammatory Bowel Diseases: A Population Study in a Healthcare District of North-West Italy. Journal of Clinical Medicine, 12(2), 641. https://doi.org/10.3390/jcm12020641

Aniwan, S., Harmsen, W. S., Tremaine, W. J., & Loftus, E. v. (2019). Incidence of inflammatory bowel disease by race and ethnicity in a population-based inception cohort from 1970 through 2010. Therapeutic Advances in Gastroenterology, 12, 175628481982769. https://doi.org/10.1177/1756284819827692

Family History is Biggest Risk for Crohn’s and Colitis. (n.d.). Boston Endoscopy Center. Retrieved August 8, 2024, from https://bostonendoscopycenter.com/news/family-history-is-biggest-risk-for-crohns-and-colitis#:~:text=If%20your%20mother%20and%20your,more%20relatives%20who%20are%20affected

Higgins, R. (2014). ABDOMINAL PAIN - INFLAMMATORY BOWEL DISEASE. ACS/ASE Medical Student Core Curriculum . https://www.facs.org/media/q3updyuk/abdominal_pain_inflammatory.pdf

Jarmakiewicz-Czaja, S., Zielińska, M., Sokal, A., & Filip, R. (2022). Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes, 13(12), 2388. https://doi.org/10.3390/genes13122388

Vedamurthy, A., & Ananthakrishnan, A. N. (2019). Influence of Environmental Factors in the Development and Outcomes of Inflammatory Bowel Disease. Gastroenterology & Hepatology, 15(2), 72–82.

Okada, H., Kuhn, C., Feillet, H., & Bach, J.-F. (2010). The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clinical and Experimental Immunology, 160(1), 1–9. https://doi.org/10.1111/j.1365-2249.2010.04139.x

Alatab, S., Sepanlou, S. G., Ikuta, K., Vahedi, H., Bisignano, C., Safiri, S., Sadeghi, A., Nixon, M. R., Abdoli, A., Abolhassani, H., Alipour, V., Almadi, M. A. H., Almasi-Hashiani, A., Anushiravani, A., Arabloo, J., Atique, S., Awasthi, A., Badawi, A., Baig, A. A. A., … Naghavi, M. (2020). The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology & Hepatology, 5(1), 17–30. https://doi.org/10.1016/S2468-1253(19)30333-4

Hodges, P., & Kelly, P. (2020). Inflammatory bowel disease in Africa: what is the current state of knowledge? International Health, 12(3), 222–230. https://doi.org/10.1093/inthealth/ihaa005

Pandey, B., Reba, M., Joshi, P. K., & Seto, K. C. (2020). Urbanization and food consumption in India. Scientific Reports, 10(1), 17241. https://doi.org/10.1038/s41598-020-73313-8

Abegunde, A. T., Muhammad, B. H., Bhatti, O., & Ali, T. (2016). Environmental risk factors for inflammatory bowel diseases: Evidence based literature review. World Journal of Gastroenterology, 22(27), 6296. https://doi.org/10.3748/wjg.v22.i27.6296

Kaplan, G. G., & Windsor, J. W. (2021). The four epidemiological stages in the global evolution of inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 18(1), 56–66. https://doi.org/10.1038/s41575-020-00360-x

Zaltman, C., do Espírito Santo, P. A., & de Magalhães Costa, M. H. (2024). Ambient air pollution and inflammatory bowel disease—a narrative review. Digestive Medicine Research, 7, 13–13. https://doi.org/10.21037/dmr-23-12

Effects of Acid Rain. (2024, May 7). United States Environmental Protection Agency. https://www.epa.gov/acidrain/effects-acid-rain

Fatma, K., & Ahmet, Ö. (2023). Negative effects of acid rains on agricultural areas. Annals of Environmental Science and Toxicology, 7(1), 013–016. https://doi.org/10.17352/aest.000065

Hills, R., Pontefract, B., Mishcon, H., Black, C., Sutton, S., & Theberge, C. (2019). Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 11(7), 1613. https://doi.org/10.3390/nu11071613

Kaplan, G. G., Hubbard, J., Korzenik, J., Sands, B. E., Panaccione, R., Ghosh, S., Wheeler, A. J., & Villeneuve, P. J. (2010). The Inflammatory Bowel Diseases and Ambient Air Pollution: A Novel Association. American Journal of Gastroenterology, 105(11), 2412–2419. https://doi.org/10.1038/ajg.2010.252

Berkowitz, L., Schultz, B. M., Salazar, G. A., Pardo-Roa, C., Sebastián, V. P., Álvarez-Lobos, M. M., & Bueno, S. M. (2018). Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn’s Disease and Ulcerative Colitis. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00074

AlQasrawi, D., Qasem, A., & Naser, S. A. (2020). Divergent Effect of Cigarette Smoke on Innate Immunity in Inflammatory Bowel Disease: A Nicotine-Infection Interaction. International Journal of Molecular Sciences, 21(16), 5801. https://doi.org/10.3390/ijms21165801

Felson, S. (2024, June 1). Smoking and Ulcerative Colitis: What’s the Link? WebMD. https://www.webmd.com/ibd-crohns-disease/ulcerative-colitis/uc-smoking-the-link

Zhang, W., Lin, H., Zou, M., Yuan, Q., Huang, Z., Pan, X., & Zhang, W. (2022). Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.826889

Guslandi. (1999). Nicotine treatment for ulcerative colitis. British Journal of Clinical Pharmacology, 48(4), 481–484. https://doi.org/10.1046/j.1365-2125.1999.00039.x

Price, L. R., & Martinez, J. (2020). Cardiovascular, carcinogenic and reproductive effects of nicotine exposure: A narrative review of the scientific literature. F1000Research, 8, 1586. https://doi.org/10.12688/f1000research.20062.2

Patangia, D. v., Anthony Ryan, C., Dempsey, E., Paul Ross, R., & Stanton, C. (2022). Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen, 11(1). https://doi.org/10.1002/mbo3.1260

Barrette, L. (2022, January 5). Colds and Flu: Do You Need Antibiotics? University of Rochester Medical Center. https://www.urmc.rochester.edu/news/publications/health-matters/%E2%80%98tis-the-season-colds-flu-and-superbugs

Do antibiotics harm healthy gut bacteria? (2024, April 12). MedicalNewsToday. https://www.medicalnewstoday.com/articles/common-antibiotics#summary

Stromberg, J. (2015, January 28). The hygiene hypothesis: How being too clean might be making us sick. Vox. https://www.vox.com/2014/6/25/5837892/is-being-too-clean-making-us-sick

Rio, P., Gasbarrini, A., Gambassi, G., & Cianci, R. (2024). Pollutants, microbiota and immune system: frenemies within the gut. Frontiers in Public Health, 12. https://doi.org/10.3389/fpubh.2024.1285186

Mishra, A., Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P., & Garg, A. (2015). Harmful effects of nicotine. Indian Journal of Medical and Paediatric Oncology, 36(01), 24–31. https://doi.org/10.4103/0971-5851.151771

Langdon, A., Crook, N., & Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Medicine, 8(1), 39. https://doi.org/10.1186/s13073-016-0294-z

Hashash, J. G., Elkins, J., Lewis, J. D., & Binion, D. G. (2024). AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology, 166(3), 521–532. https://doi.org/10.1053/j.gastro.2023.11.303

Campmans-Kuijpers, M. J. E., & Dijkstra, G. (2021). Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients, 13(4), 1067. https://doi.org/10.3390/nu13041067

Limdi, J. K. (2018). Dietary practices and inflammatory bowel disease. Indian Journal of Gastroenterology, 37(4), 284–292. https://doi.org/10.1007/s12664-018-0890-5

Shapira, N. (2019). The Metabolic Concept of Meal Sequence vs. Satiety: Glycemic and Oxidative Responses with Reference to Inflammation Risk, Protective Principles and Mediterranean Diet. Nutrients, 11(10), 2373. https://doi.org/10.3390/nu11102373

Fu, J., Zheng, Y., Gao, Y., & Xu, W. (2022). Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms, 10(12), 2507. https://doi.org/10.3390/microorganisms10122507

Poulson, B. (2024, July 24). Soluble vs. Insoluble Fiber: Benefits and Differences. Verywellhealth. https://www.verywellhealth.com/soluble-vs-insoluble-fiber-7093262#:~:text=There%20are%20two%20main%20types,to%20keep%20bowel%20movements%20regular

Dresden, D. (2024, February 9). How much fiber is too much? MedicalNewsToday. https://www.medicalnewstoday.com/articles/321286

Ney, L.-M., Wipplinger, M., Grossmann, M., Engert, N., Wegner, V. D., & Mosig, A. S. (2023). Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biology, 13(3). https://doi.org/10.1098/rsob.230014

Thurler, K. (2022, August 1). Research Links Red Meat Intake, Gut Microbiome, and Cardiovascular Disease in Older Adults . TuftsNow. https://now.tufts.edu/2022/08/01/research-links-red-meat-intake-gut-microbiome-and-cardiovascular-disease-older-adults

Wilson, A. M., Teft, W. P., Tirona, R. P., Woolsey, S., Morse, B. P., DeGorter, M. P., Hegele, R. M., Choi, Y.-H. P., & Kim, R. M. (2015, October). Trimethylamine-N-oxide: A Novel Biomarker for the Identification of Inflammatory Bowel Disease. American Journal of Gastroenterology. https://journals.lww.com/ajg/fulltext/2015/10001/trimethylamine_n_oxide__a_novel_biomarker_for_the.1818.aspx#:~:text=Choline%20levels%20were%20higher%20in,to%20a%20non%2DIBD%20population

Satokari, R. (2020). High Intake of Sugar and the Balance between Pro- and Anti-Inflammatory Gut Bacteria. Nutrients, 12(5), 1348. https://doi.org/10.3390/nu12051348

UT Southwestern Medical Center. (2020, October 29). High-sugar diet can damage the gut, intensifying risk for colitis. ScienceDaily. https://www.sciencedaily.com/releases/2020/10/201029142042.htm

Zhang, D., Jin, W., Wu, R., Li, J., Park, S.-A., Tu, E., Zanvit, P., Xu, J., Liu, O., Cain, A., & Chen, W. (2019). High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity, 51(4), 671-681.e5. https://doi.org/10.1016/j.immuni.2019.08.001

Downloads

Posted

2024-08-25

Categories