Preprint / Version 1

Genetic Causes of Congenital Tooth Agenesis

##article.authors##

  • Jiyoo Choi Korea International School

DOI:

https://doi.org/10.58445/rars.1519

Keywords:

tooth agenesis, dentistry, dentition, hypodontia, oligodontia, anodontia, mxs1, pax9, genes, mutation

Abstract

Differential gene expression and mutations have significant ramifications on dental development, especially regarding odontoblast development in both the primary and permanent dentition. One of the most significant effects is tooth agenesis, a condition where an individual has one or more missing teeth. This paper will expound the prevalence, major symptoms, genetic precursors, associated conditions, and health implications of congenital tooth agenesis. Although many genetic factors, external influences, and inheritance patterns contribute to the development of tooth agenesis in an individual, the three primary genes involved are MSH Homeobox 1 (MSX1), Paired Box Protein 9 (PAX9), and Axis Inhibition Protein 2 (AXIN2). The expression of these genes have a significant impact on the growth of the functional form of teeth, and this paper will investigate the connection between gene expression and its molecular impact during various stages of odontoblast development.

References

Shimizu, T., & Maeda, T. (2009). Prevalence and genetic basis of tooth agenesis. Japanese Dental Science Review, 45(1), 52–58. https://doi.org/10.1016/j.jdsr.2008.12.001

Rølling, S. (1980). Hypodontia of permanent teeth in Danish schoolchildren. European Journal of Oral Sciences, 88(5), 365–369. https://doi.org/10.1111/j.1600-0722.1980.tb01240.x

Bogza, A. B. (2014). A study of prevalence and distribution of tooth agenesis. Journal of Medicine and Life, 7(4), PMC4316137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316137/pdf/JMedLife-07-551.pdf

Meade, M. J., & Dreyer, C. W. (2023). Tooth agenesis: An overview of diagnosis, aetiology and management. Japanese Dental Science Review, 59, 209–218. https://doi.org/10.1016/j.jdsr.2023.07.001

Schonberger, S., Shapira, Y., Pavlidi, A. M., & Finkelstein, T. (2022). Prevalence and Patterns of Permanent Tooth Agenesis among Orthodontic Patients—Treatment Options and Outcome. Applied Sciences, 12(23), 12252. https://doi.org/10.3390/app122312252

Al-Ani, A. H., Antoun, J. S., Thomson, W. M., Merriman, T. R., & Farella, M. (2017). Hypodontia: An update on its etiology, classification, and clinical management. BioMed Research International, 2017, 1–9. https://doi.org/10.1155/2017/9378325

Schupak, G. E., Hung, J., & McNulty, E. C. (2015). Esthetics and orthodontics. In Elsevier eBooks (pp. 318–337). https://doi.org/10.1016/b978-0-323-09176-3.00024-3

Aruede, G., & Pepper, T. (2023, May 22). Anatomy, permanent dentition. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK570590/

Sharma, P., Arora, A., & Valiathan, A. (2014). Age changes of jaws and soft tissue profile. The Scientific World Journal/TheScientificWorldjournal, 2014, 1–7. https://doi.org/10.1155/2014/301501

Thalidomide embryopathy (Concept Id: C0432365) - MedGen - NCBI. (n.d.). https://www.ncbi.nlm.nih.gov/medgen/98490

Gallo, C., Pastore, I., Beghetto, M., & Mucignat-Caretta, C. (2019). Symmetry of dental agenesis in Down Syndrome children. Journal of Dental Sciences, 14(1), 61–65. https://doi.org/10.1016/j.jds.2018.04.003

Ritwik, P., & Patterson, K. K. (2018). Diagnosis of tooth agenesis in childhood and risk for neoplasms in adulthood. The Ochsner Journal, 18(4), 345–350. https://doi.org/10.31486/toj.18.0060

Nishimura, S., Inada, H., Sawa, Y., & Ishikawa, H. (2013). Risk factors to cause tooth formation anomalies in chemotherapy of paediatric cancers. European Journal of Cancer Care, 22(3), 353–360. https://doi.org/10.1111/ecc.12038

Oeschger, E. S., Kanavakis, G., Cocos, A., Halazonetis, D. J., & Gkantidis, N. (2022). Number of teeth is related to craniofacial morphology in humans. Biology, 11(4), 544. https://doi.org/10.3390/biology11040544

Ye, X., & Attaie, A. (2016). Genetic basis of nonsyndromic and syndromic tooth agenesis. Journal of Pediatric Genetics, 05(04), 198–208. https://doi.org/10.1055/s-0036-1592421

Satokata, I., & Maas, R. (1994b). Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genetics, 6(4), 348–356. https://doi.org/10.1038/ng0494-348

Kerekes-Máthé, B., Mártha, K., Bănescu, C., O’Donnell, M. B., & Brook, A. H. (2023). Genetic and morphological variation in hypodontia of maxillary lateral incisors. Genes, 14(1), 231. https://doi.org/10.3390/genes14010231

Xin, T., Zhang, T., Li, Q., Yu, T., Zhu, Y., Yang, R., & Zhou, Y. (2018). A novel mutation of MSX1 in oligodontia inhibits odontogenesis of dental pulp stem cells via the ERK pathway. Stem Cell Research & Therapy, 9(1). https://doi.org/10.1186/s13287-018-0965-3

Yamakoshi, Y. (2009). Dentinogenesis and dentin sialophosphoprotein (DSPP). Journal of Oral Biosciences, 51(3), 134–142. https://doi.org/10.1016/s1349-0079(09)80021-2

Callahan, N., Modesto, A., Meira, R., Seymen, F., Patir, A., & Vieira, A. (2009). Axis inhibition protein 2 (AXIN2) polymorphisms and tooth agenesis. Archives of Oral Biology, 54(1), 45–49. https://doi.org/10.1016/j.archoralbio.2008.08.002

Galluccio, G., & Pilotto, A. (2008). Genetics of dental agenesis: anterior and posterior area of the arch. European Archives of Paediatric Dentistry, 9(1), 41–45. https://doi.org/10.1007/bf03321595

Chhabra, N. C. (2014). Genetic basis of dental agenesis - molecular genetics patterning clinical dentistry. Oral Medicine and Pathology, 19(2), e112-119. https://doi.org/10.4317/medoral.19158

Peters, H., Neubüser, A., Kratochwil, K., & Balling, R. (1998). Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes & Development, 12(17), 2735–2747. https://doi.org/10.1101/gad.12.17.2735

Kratochwil, K., Galceran, J., Tontsch, S., Roth, W., & Grosschedl, R. (2002). FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1−/− mice. Genes & Development, 16(24), 3173–3185. https://doi.org/10.1101/gad.1035602

Suri, S. S. (2024). Prevalence and patterns of permanent tooth agenesis in Down syndrome and their association with craniofacial morphology. The Angle Orthodontist, 81(2), PMC8925261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925261/

Letra, A., Chiquet, B., Hansen-Kiss, E., Menezes, S., & Hunter, E. (2021, July 22). Nonsyndromic tooth agenesis overview. GeneReviews® - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK572295/

Vastardis, H. (2000). The genetics of human tooth agenesis: New discoveries for understanding dental anomalies. American Journal of Orthodontics and Dentofacial Orthopedics, 117(6), 650–656. https://doi.org/10.1016/s0889-5406(00)70173-9

Küchler, E., Lips, A., Tannure, P., Ho, B., Costa, M., Granjeiro, J., & Vieira, A. (2012). Tooth Agenesis Association with Self-reported Family History of Cancer. Journal of Dental Research, 92(2), 149–155. https://doi.org/10.1177/0022034512468750

Kalf‐Scholte, S. M., Van Wijk, A., Trias, A. M., & Valkenburg, C. (2024). Patterns of tooth agenesis in individuals with Down syndrome. Special Care in Dentistry. https://doi.org/10.1111/scd.13042

Guilleminault, C., Abad, V. C., Chiu, H., Peters, B., & Quo, S. (2015). Missing teeth and pediatric obstructive sleep apnea. Sleep and Breathing, 20(2), 561–568. https://doi.org/10.1007/s11325-015-1238-3

Gawron-Jakubek, W., Spaczynska, J., Pitynski, K., & Loster, B. W. (2019). Coexistence of tooth agenesis and ovarian cancer — a systematic literature review. Ginekologia Polska, 90(12), 707–710. https://doi.org/10.5603/gp.2019.0121

Jitpibull, J., Tangjit, N., Dechkunakorn, S., Anuwongnukroh, N., Srikhirin, T., Vongsetskul, T., & Sritanaudomchai, H. (2021). Effect of surface chemistry‐modified polycaprolactone scaffolds on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. European Journal of Oral Sciences, 129(2). https://doi.org/10.1111/eos.12766

Samiei, M., Fathi, M., Barar, J., Fathi, N., Amiryaghoubi, N., & Omidi, Y. (2021). Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. Journal of Drug Delivery Science and Technology, 64, 102600. https://doi.org/10.1016/j.jddst.2021.102600

Takahashi, K., Kiso, H., Murashima-Suginami, A., Tokita, Y., Sugai, M., Tabata, Y., & Bessho, K. (2020). Development of tooth regenerative medicine strategies by controlling the number of teeth using targeted molecular therapy. Inflammation and Regeneration, 40(1). https://doi.org/10.1186/s41232-020-00130-x

Downloads

Posted

2024-08-25

Categories