Harnessing the Power of Artificial Intelligence to Combat Climate Change
A Comprehensive Analysis
DOI:
https://doi.org/10.58445/rars.1517Keywords:
Artificial Intelligence, Climate Change, SustainabilityAbstract
Climate change poses a significant threat to humanity, affecting various sectors such as energy, agriculture, transportation, and water sustainability. Concurrently, the rise of Artificial Intelligence (AI) presents opportunities to enhance our understanding of climate change and develop innovative solutions. This paper provides an in-depth analysis of AI's capabilities and applications in combating climate change and argues that the costs incurred due to its usage are outweighed by the benefits. It examines AI’s substantial contributions to understanding and combating climate change, including its ability to process vast amounts of data, recognize patterns, and improve decision-making. In addition, it highlights AI's utility to key societal sectors – such as energy, agriculture, transportation, and water management – highlighting its potential to enhance efficiency, reduce environmental harm, and support informed decision-making. Furthermore, the paper addresses counterarguments centering on the energy demands associated with AI and presents possible solutions to mitigate these issues. By leveraging AI's computational power and data processing abilities, society can engineer a more sustainable and resilient future, making AI an essential tool in the fight against climate change.
References
Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial
intelligence in sustainable energy industry: Status Quo, challenges and opportunities.
Journal of Cleaner Production, 289, 125834.
https://doi.org/10.1016/j.jclepro.2021.125834
Andonie, R. (2019). Hyperparameter optimization in learning systems. Journal of Membrane
Computing, 1(4), 279–291. https://doi.org/10.1007/s41965-019-00023-0
Chapman, R., Cock, J., Samson, M., Janetski, N., Janetski, K., Gusyana, D., Dutta, S., &
Oberthür, T. (2021). Crop response to El Niño-Southern Oscillation related weather
variation to help farmers manage their crops. Scientific Reports, 11(1), 8292.
https://doi.org/10.1038/s41598-021-87520-4
Chen, L., Chen, Z., Zhang, Y., Liu, Y., Osman, A. I., Farghali, M., Hua, J., Al-Fatesh, A., Ihara,
I., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence-based solutions for climate
change: A review. Environmental Chemistry Letters, 21(5), 2525–2557.
https://doi.org/10.1007/s10311-023-01617-y
Chen, L., Han, B., Wang, X., Zhao, J., Yang, W., & Yang, Z. (2023). Machine Learning Methods
in Weather and Climate Applications: A Survey. Applied Sciences, 13(21), 12019.
https://doi.org/10.3390/app132112019
Cheng, H., Zhang, M., & Shi, J. Q. (2023). A Survey on Deep Neural Network
Pruning-Taxonomy, Comparison, Analysis, and Recommendations (arXiv:2308.06767).
arXiv. http://arxiv.org/abs/2308.06767
Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2021). The AI Gambit — Leveraging
Artificial Intelligence to Combat Climate Change: Opportunities, Challenges, and
Recommendations. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3804983
Gaur, L., Afaq, A., Arora, G. K., & Khan, N. (2023). Artificial intelligence for carbon emissions
using system of systems theory. Ecological Informatics, 76, 102165.
https://doi.org/10.1016/j.ecoinf.2023.102165
Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI) to Enhance
Societal Readiness for El Niño’s Impacts. International Journal of Disaster Risk Science,
(3), 394–403. https://doi.org/10.1007/s13753-020-00275-w
Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare Earth Elements: Overview of Mining,
Mineralogy, Uses, Sustainability and Environmental Impact. Resources, 3(4), 614–635.
https://doi.org/10.3390/resources3040614
Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network
(arXiv:1503.02531). arXiv. http://arxiv.org/abs/1503.02531
Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019).
Machine learning and artificial intelligence to aid climate change research and
preparedness. Environmental Research Letters, 14(12), 124007.
https://doi.org/10.1088/1748-9326/ab4e55
Iyer, L. S. (2021). AI enabled applications towards intelligent transportation. Transportation
Engineering, 5, 100083. https://doi.org/10.1016/j.treng.2021.100083
Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., & Kalenichenko, D.
(2017). Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference (arXiv:1712.05877). arXiv.
http://arxiv.org/abs/1712.05877
Kirkpatrick, K. (2023). The Carbon Footprint of Artificial Intelligence. Communications of the
ACM, 66(8), 17–19. https://doi.org/10.1145/3603746
Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). Quantifying the Carbon Emissions
of Machine Learning (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1910.09700
Liu, Y., Cao, J., Liu, C., Ding, K., & Jin, L. (2024). Datasets for Large Language Models: A
Comprehensive Survey (arXiv:2402.18041). arXiv. http://arxiv.org/abs/2402.18041
Liu, Y., He, H., Han, T., Zhang, X., Liu, M., Tian, J., Zhang, Y., Wang, J., Gao, X., Zhong, T.,
Pan, Y., Xu, S., Wu, Z., Liu, Z., Zhang, X., Zhang, S., Hu, X., Zhang, T., Qiang, N., …
Ge, B. (2024). Understanding LLMs: A Comprehensive Overview from Training to
Inference (arXiv:2401.02038). arXiv. http://arxiv.org/abs/2401.02038
Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M.,
& Dean, J. (2021). Carbon Emissions and Large Neural Network Training
(arXiv:2104.10350). arXiv. http://arxiv.org/abs/2104.10350
Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in
climate models. Proceedings of the National Academy of Sciences, 115(39), 9684–9689.
https://doi.org/10.1073/pnas.1810286115
Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong
eastern Pacific El Niño events using deep learning. Scientific Reports, 13(1), 21150.
https://doi.org/10.1038/s41598-023-45739-3
Sahil, K., Mehta, P., Kumar Bhardwaj, S., & Dhaliwal, L. K. (2023). Development of mitigation
strategies for the climate change using artificial intelligence to attain sustainability. In
Visualization Techniques for Climate Change with Machine Learning and Artificial
Intelligence (pp. 421–448). Elsevier.
https://doi.org/10.1016/B978-0-323-99714-0.00021-2
Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep
Learning in NLP (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1906.02243
Taddeo, M., Tsamados, A., Cowls, J., & Floridi, L. (2021). Artificial Intelligence and the Climate
Emergency: Opportunities, Challenges, and Recommendations. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.3873881
Talaei Khoei, T., Ould Slimane, H., & Kaabouch, N. (2023). Deep learning: Systematic review,
models, challenges, and research directions. Neural Computing and Applications, 35(31),
–23124. https://doi.org/10.1007/s00521-023-08957-4
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A.,
Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence
in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233.
https://doi.org/10.1038/s41467-019-14108-y
Wong, C. (2024). How AI is improving climate forecasts. Nature, 628(8009), 710–712.
https://doi.org/10.1038/d41586-024-00780-8
Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Behram, F.
A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A., Candido, S.,
Brooks, D., Chauhan, G., Lee, B., Lee, H.-H. S., … Hazelwood, K. (2022). Sustainable
AI: Environmental Implications, Challenges and Opportunities (arXiv:2111.00364).
arXiv. http://arxiv.org/abs/2111.00364
Zhang, B., & Qiao, Y. (2024). AI, Sensors, and Robotics for Smart Agriculture. Agronomy, 14(6),
Downloads
Posted
Categories
License
Copyright (c) 2024 Andrew Zhao
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.