Preprint / Version 1

Harnessing the Power of Artificial Intelligence to Combat Climate Change

A Comprehensive Analysis

##article.authors##

  • Andrew Zhao Redmond High School

DOI:

https://doi.org/10.58445/rars.1517

Keywords:

Artificial Intelligence, Climate Change, Sustainability

Abstract

Climate change poses a significant threat to humanity, affecting various sectors such as energy, agriculture, transportation, and water sustainability. Concurrently, the rise of Artificial Intelligence (AI) presents opportunities to enhance our understanding of climate change and develop innovative solutions. This paper provides an in-depth analysis of AI's capabilities and applications in combating climate change and argues that the costs incurred due to its usage are outweighed by the benefits. It examines AI’s substantial contributions to understanding and combating climate change, including its ability to process vast amounts of data, recognize patterns, and improve decision-making. In addition, it highlights AI's utility to key societal sectors – such as energy, agriculture, transportation, and water management – highlighting its potential to enhance efficiency, reduce environmental harm, and support informed decision-making. Furthermore, the paper addresses counterarguments centering on the energy demands associated with AI and presents possible solutions to mitigate these issues. By leveraging AI's computational power and data processing abilities, society can engineer a more sustainable and resilient future, making AI an essential tool in the fight against climate change.

References

Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial

intelligence in sustainable energy industry: Status Quo, challenges and opportunities.

Journal of Cleaner Production, 289, 125834.

https://doi.org/10.1016/j.jclepro.2021.125834

Andonie, R. (2019). Hyperparameter optimization in learning systems. Journal of Membrane

Computing, 1(4), 279–291. https://doi.org/10.1007/s41965-019-00023-0

Chapman, R., Cock, J., Samson, M., Janetski, N., Janetski, K., Gusyana, D., Dutta, S., &

Oberthür, T. (2021). Crop response to El Niño-Southern Oscillation related weather

variation to help farmers manage their crops. Scientific Reports, 11(1), 8292.

https://doi.org/10.1038/s41598-021-87520-4

Chen, L., Chen, Z., Zhang, Y., Liu, Y., Osman, A. I., Farghali, M., Hua, J., Al-Fatesh, A., Ihara,

I., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence-based solutions for climate

change: A review. Environmental Chemistry Letters, 21(5), 2525–2557.

https://doi.org/10.1007/s10311-023-01617-y

Chen, L., Han, B., Wang, X., Zhao, J., Yang, W., & Yang, Z. (2023). Machine Learning Methods

in Weather and Climate Applications: A Survey. Applied Sciences, 13(21), 12019.

https://doi.org/10.3390/app132112019

Cheng, H., Zhang, M., & Shi, J. Q. (2023). A Survey on Deep Neural Network

Pruning-Taxonomy, Comparison, Analysis, and Recommendations (arXiv:2308.06767).

arXiv. http://arxiv.org/abs/2308.06767

Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2021). The AI Gambit — Leveraging

Artificial Intelligence to Combat Climate Change: Opportunities, Challenges, and

Recommendations. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3804983

Gaur, L., Afaq, A., Arora, G. K., & Khan, N. (2023). Artificial intelligence for carbon emissions

using system of systems theory. Ecological Informatics, 76, 102165.

https://doi.org/10.1016/j.ecoinf.2023.102165

Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI) to Enhance

Societal Readiness for El Niño’s Impacts. International Journal of Disaster Risk Science,

(3), 394–403. https://doi.org/10.1007/s13753-020-00275-w

Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare Earth Elements: Overview of Mining,

Mineralogy, Uses, Sustainability and Environmental Impact. Resources, 3(4), 614–635.

https://doi.org/10.3390/resources3040614

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network

(arXiv:1503.02531). arXiv. http://arxiv.org/abs/1503.02531

Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019).

Machine learning and artificial intelligence to aid climate change research and

preparedness. Environmental Research Letters, 14(12), 124007.

https://doi.org/10.1088/1748-9326/ab4e55

Iyer, L. S. (2021). AI enabled applications towards intelligent transportation. Transportation

Engineering, 5, 100083. https://doi.org/10.1016/j.treng.2021.100083

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., & Kalenichenko, D.

(2017). Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference (arXiv:1712.05877). arXiv.

http://arxiv.org/abs/1712.05877

Kirkpatrick, K. (2023). The Carbon Footprint of Artificial Intelligence. Communications of the

ACM, 66(8), 17–19. https://doi.org/10.1145/3603746

Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). Quantifying the Carbon Emissions

of Machine Learning (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1910.09700

Liu, Y., Cao, J., Liu, C., Ding, K., & Jin, L. (2024). Datasets for Large Language Models: A

Comprehensive Survey (arXiv:2402.18041). arXiv. http://arxiv.org/abs/2402.18041

Liu, Y., He, H., Han, T., Zhang, X., Liu, M., Tian, J., Zhang, Y., Wang, J., Gao, X., Zhong, T.,

Pan, Y., Xu, S., Wu, Z., Liu, Z., Zhang, X., Zhang, S., Hu, X., Zhang, T., Qiang, N., …

Ge, B. (2024). Understanding LLMs: A Comprehensive Overview from Training to

Inference (arXiv:2401.02038). arXiv. http://arxiv.org/abs/2401.02038

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M.,

& Dean, J. (2021). Carbon Emissions and Large Neural Network Training

(arXiv:2104.10350). arXiv. http://arxiv.org/abs/2104.10350

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in

climate models. Proceedings of the National Academy of Sciences, 115(39), 9684–9689.

https://doi.org/10.1073/pnas.1810286115

Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong

eastern Pacific El Niño events using deep learning. Scientific Reports, 13(1), 21150.

https://doi.org/10.1038/s41598-023-45739-3

Sahil, K., Mehta, P., Kumar Bhardwaj, S., & Dhaliwal, L. K. (2023). Development of mitigation

strategies for the climate change using artificial intelligence to attain sustainability. In

Visualization Techniques for Climate Change with Machine Learning and Artificial

Intelligence (pp. 421–448). Elsevier.

https://doi.org/10.1016/B978-0-323-99714-0.00021-2

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep

Learning in NLP (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1906.02243

Taddeo, M., Tsamados, A., Cowls, J., & Floridi, L. (2021). Artificial Intelligence and the Climate

Emergency: Opportunities, Challenges, and Recommendations. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.3873881

Talaei Khoei, T., Ould Slimane, H., & Kaabouch, N. (2023). Deep learning: Systematic review,

models, challenges, and research directions. Neural Computing and Applications, 35(31),

–23124. https://doi.org/10.1007/s00521-023-08957-4

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A.,

Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence

in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233.

https://doi.org/10.1038/s41467-019-14108-y

Wong, C. (2024). How AI is improving climate forecasts. Nature, 628(8009), 710–712.

https://doi.org/10.1038/d41586-024-00780-8

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Behram, F.

A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A., Candido, S.,

Brooks, D., Chauhan, G., Lee, B., Lee, H.-H. S., … Hazelwood, K. (2022). Sustainable

AI: Environmental Implications, Challenges and Opportunities (arXiv:2111.00364).

arXiv. http://arxiv.org/abs/2111.00364

Zhang, B., & Qiao, Y. (2024). AI, Sensors, and Robotics for Smart Agriculture. Agronomy, 14(6),

https://doi.org/10.3390/agronomy14061180

Downloads

Posted

2024-08-25