N. fowleri
Epidemiology, Pathogenesis, and Current Treatment Options
DOI:
https://doi.org/10.58445/rars.1503Keywords:
N. fowleri, Primary Amoebic Meningoencephalitis (PAM), TreatmentAbstract
N.fowleri is an amoeba that can cause a deadly disease in humans called Primary Amoebic Meningoencephalitis (PAM). Humans do not commonly contract this pathogen but when they do, its mortality rate is about 98%[1]. This pathogen is not confined to one region; it is spread out all around the world and primarily resides in warm freshwater bodies[2]. N.fowleri is the only species in the Naegleria genus that is pathogenic to humans, suggesting that it evolved to be pathogenic[3][4]. N.fowleri secretes certain molecules that damage the host cells, allowing the amoeba to evade the host's immune system and consume host cells. Treatment options are limited for this pathogen, but a few drugs like amphotericin B and chlorpromazine can help fight off the pathogen to some degree[5][6][7]. As N.fowleri is so deadly, prevention is better than cure. Some options to prevent contracting this life-threatening pathogen include not swimming in contaminated water bodies, or using nose plugs while swimming. This article will review the biology, pathogenesis, and treatment options of this pathogen.
References
Güémez, A., & García, E. (2021). Primary Amoebic Meningoencephalitis by Naegleria fowleri: Pathogenesis and Treatments. Biomolecules, 11(9), 1320. https://doi.org/10.3390/biom11091320
Gharpure, R., Bliton, J., Goodman, A., Ali, I. K. M., Yoder, J., & Cope, J. R. (2021). Epidemiology and Clinical Characteristics of Primary Amebic Meningoencephalitis Caused by Naegleria fowleri : A Global Review. Clinical Infectious Diseases, 73(1), e19–e27. https://doi.org/10.1093/cid/ciaa520
de Jonckheere, J. F. (2011). Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infection, Genetics and Evolution, 11(7), 1520–1528. https://doi.org/10.1016/j.meegid.2011.07.023
Herman, E. K., Greninger, A., van der Giezen, M., Ginger, M. L., Ramirez-Macias, I., Miller, H. C., Morgan, M. J., Tsaousis, A. D., Velle, K., Vargová, R., Záhonová, K., Najle, S. R., MacIntyre, G., Muller, N., Wittwer, M., Zysset-Burri, D. C., Eliáš, M., Slamovits, C. H., Weirauch, M. T., … Dacks, J. B. (2021). Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biology, 19(1), 142. https://doi.org/10.1186/s12915-021-01078-1
Cárdenas-Zúñiga, R., Silva-Olivares, A., Villalba-Magdaleno, J. D. A., Sánchez-Monroy, V., Serrano-Luna, J., & Shibayama, M. (2017). Amphotericin B induces apoptosis-like programmed cell death in Naegleria fowleri and Naegleria gruberi. Microbiology, 163(7), 940–949. https://doi.org/10.1099/mic.0.000500
Kim, J.-H., Jung, S.-Y., Lee, Y.-J., Song, K.-J., Kwon, D., Kim, K., Park, S., Im, K.-I., & Shin, H.-J. (2008). Effect of Therapeutic Chemical Agents In Vitro and on Experimental Meningoencephalitis Due to Naegleria fowleri. Antimicrobial Agents and Chemotherapy, 52(11), 4010–4016. https://doi.org/10.1128/AAC.00197-08
Pervin, N., & Sundareshan, V. (2022). Naegleria.
Sarma, J. V., & Ward, P. A. (2011). The complement system. Cell and Tissue Research, 343(1), 227–235. https://doi.org/10.1007/s00441-010-1034-0
Soontrapa, P., Jitmuang, A., Ruenchit, P., Tiewcharoen, S., Sarasombath, P. T., & Rattanabannakit, C. (2022). The First Molecular Genotyping of Naegleria fowleri Causing Primary Amebic Meningoencephalitis in Thailand With Epidemiology and Clinical Case Reviews. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.931546
Visvesvara, G. S. (2013). Infections with free-living amebae (pp. 153–168). https://doi.org/10.1016/B978-0-444-53490-3.00010-8
Bexkens, M. L., Zimorski, V., Sarink, M. J., Wienk, H., Brouwers, J. F., de Jonckheere, J. F., Martin, W. F., Opperdoes, F. R., van Hellemond, J. J., & Tielens, A. G. M. (2018). Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen. Cell Reports, 25(3), 537-543.e3. https://doi.org/10.1016/j.celrep.2018.09.055
Grace, E., Asbill, S., & Virga, K. (2015). Naegleria fowleri: Pathogenesis, Diagnosis, and Treatment Options. Antimicrobial Agents and Chemotherapy, 59(11), 6677–6681. https://doi.org/10.1128/AAC.01293-15
Capewell, L. G., Harris, A. M., Yoder, J. S., Cope, J. R., Eddy, B. A., Roy, S. L., Visvesvara, G. S., Fox, L. M., & Beach, M. J. (2015). Diagnosis, Clinical Course, and Treatment of Primary Amoebic Meningoencephalitis in the United States, 1937-2013. Journal of the Pediatric Infectious Diseases Society, 4(4), e68–e75. https://doi.org/10.1093/jpids/piu103
Shibayama, M., Martínez-Castillo, M., Silva-Olivares, A., Galindo-Gómez, S., Navarro-García, F., Escobar-Herrera, J., Sabanero, M., Tsutsumi, V., & Serrano-Luna, J. (2013). Disruption of MDCK cell tight junctions by the free-living amoeba Naegleria fowleri. Microbiology, 159(Pt_2), 392–401. https://doi.org/10.1099/mic.0.063255-0
Balboa, M. A., & Balsinde, J. (2021). Phospholipases: From Structure to Biological Function. Biomolecules, 11(3), 428. https://doi.org/10.3390/biom11030428
Visvesvara, G. S. (2013). Infections with free-living amebae (pp. 153–168). https://doi.org/10.1016/B978-0-444-53490-3.00010-8
John, D. T., Cole, T. B., & Marciano-Cabral, F. M. (1984). Sucker-like structures on the pathogenic amoeba Naegleria fowleri. Applied and Environmental Microbiology, 47(1), 12–14. https://doi.org/10.1128/aem.47.1.12-14.1984
Marciano-Cabral, F., & Cabral, G. A. (2007). The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunology & Medical Microbiology, 51(2), 243–259. https://doi.org/10.1111/j.1574-695X.2007.00332.x
Sarma, J. V., & Ward, P. A. (2011). The complement system. Cell and Tissue Research, 343(1), 227–235. https://doi.org/10.1007/s00441-010-1034-0
Jarillo-Luna, A., Moreno-Fierros, L., Camps-Rodriguez, R., Rodriguez-Monroy, M.A., Lara-Padilla, E., Rojas-Harnadez, S. (2008). Intranasal immunization with Naegleria fowleri lysates and Cry1Ac induces metaplasia in the olfactory epithelium and increases IgA secretion. Parasite Immunology, 30(1), 31–38. https://doi.org/10.1111/j.1365-3024.2007.00999.x
Additional Files
Posted
Categories
License
Copyright (c) 2024 Pranav Rajasekharuni
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.