Opiate-Induced Epigenetic Changes and Associated Effects on Drug Addiction Behaviors
DOI:
https://doi.org/10.58445/rars.1476Keywords:
addiction, drug-seeking, drug withdrawal, epigenetics, neurobiology, opiate, opioidAbstract
Opioid abuse and addiction, in its many forms, poses a threat to the health and the livelihoods of many, with nearly 645,000 deaths occurring as a result of opioid overdose to date. This review focuses on the functions of four neurotransmitters–glutamate, gamma-aminobutyric acid (GABA), dopamine (DA), and opioid receptors–and their role in addiction-related behaviors. In particular, the complex function of epigenetic modifications–specifically DNA methylation and histone acetylation–in mediating the neural changes that underlie opioid addiction are of concern. These epigenetic modifications are linked to the development of common symptoms relating to drug abuse, including craving, loss of control, and withdrawal. Understanding these modifications offers a nuanced view into how opiates disrupt the neurobiological landscape.
References
Abcam. (2023). Histone modifications. Epigenetics application guide.
Abdulmalek, S., & Hardiman, G. (2023). Genetic and epigenetic studies of opioid abuse disorder - The potential for future diagnostics. Expert Review of Molecular Diagnostics, 23(5), 361-373. https://doi.org/10.1080/14737159.2023.2190022
Acquas, E., & Di Chiara, G. (1992). Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. Journal of Neurochemistry, 58(5), 1620-1625. https://doi.org/10.1111/j.1471-4159.1992.tb10033.x
Alvarez-Bagnarol, Y., Garcia, R., Vendruscolo, L. F., & Morales, M. (2023). Inhibition of dorsal raphe GABAergic neurons blocks hyperalgesia during heroin withdrawal. Neuropsychopharmacology, 48(9), 1300-1308. https://doi.org/10.1038/s41386-023-01620-5
Bals-Kubik, R., Ableitner, A., Herz, A., & Shippenberg, T. S. (1993). Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. Journal of Pharmacology and Experimental Therapeutics, 264(1), 489-495. https://www.ncbi.nlm.nih.gov/pubmed/8093731
Barrow, T. M., Byun, H. M., Li, X., Smart, C., Wang, Y. X., Zhang, Y., Baccarelli, A. A., & Guo, L. (2017). The effect of morphine upon DNA methylation in ten regions of the rat brain. Epigenetics, 12(12), 1038-1047. https://doi.org/10.1080/15592294.2017.1398296
Beardsley, P. M., Howard, J. L., Shelton, K. L., & Carroll, F. I. (2005). Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacology (Berl), 183(1), 118-126. https://doi.org/10.1007/s00213-005-0167-4
Berridge, M. J. (2012). Calcium signalling remodelling and disease. Biochemistry Society Transactions, 40(2), 297-309. https://doi.org/10.1042/BST20110766
Bolanos, C. A., & Nestler, E. J. (2004). Neurotrophic mechanisms in drug addiction. Neuromolecular Medicine, 5(1), 69-83. https://doi.org/10.1385/NMM:5:1:069
Bossert, J. M., Adhikary, S., St Laurent, R., Marchant, N. J., Wang, H. L., Morales, M., & Shaham, Y. (2016). Role of projections from ventral subiculum to nucleus accumbens shell in context-induced reinstatement of heroin seeking in rats. Psychopharmacology (Berl), 233(10), 1991-2004. https://doi.org/10.1007/s00213-015-4060-5
Brebner, K., Wong, T. P., Liu, L., Liu, Y., Campsall, P., Gray, S., Phelps, L., Phillips, A. G., & Wang, Y. T. (2005). Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science, 310(5752), 1340-1343. https://doi.org/10.1126/science.1116894
Browne, C. J., Godino, A., Salery, M., & Nestler, E. J. (2020). Epigenetic Mechanisms of Opioid Addiction. Biological Psychiatry, 87(1), 22-33. https://doi.org/10.1016/j.biopsych.2019.06.027
Caine, S. B., Negus, S. S., Mello, N. K., Patel, S., Bristow, L., Kulagowski, J., Vallone, D., Saiardi, A., & Borrelli, E. (2002). Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. The Journal of Neuroscience, 22(7), 2977-2988. https://doi.org/10.1523/JNEUROSCI.22-07-02977.2002
Caine, S. B., Thomsen, M., Gabriel, K. I., Berkowitz, J. S., Gold, L. H., Koob, G. F., Tonegawa, S., Zhang, J., & Xu, M. (2007). Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. The Journal of Neuroscience, 27(48), 13140-13150. https://doi.org/10.1523/JNEUROSCI.2284-07.2007
Carcoba, L. M., Contreras, A. E., Cepeda-Benito, A., & Meagher, M. W. (2011). Negative affect heightens opiate withdrawal-induced hyperalgesia in heroin dependent individuals. Journal of Addictive Diseases, 30(3), 258-270. https://doi.org/10.1080/10550887.2011.581985
Centers for Disease Control and Prevention. (2024). Understanding the opioid overdose epidemic. https://www.cdc.gov/overdose-prevention/about/understanding-the-opioid-overdose-epidemic.html
Chen, Y. L., Law, P. Y., & Loh, H. H. (2006). Sustained activation of phosphatidylinositol 3-kinase/Akt/nuclear factor kappaB signaling mediates G protein-coupled delta-opioid receptor gene expression. Journal of Biological Chemistry, 281(6), 3067-3074. https://doi.org/10.1074/jbc.M506721200
Chen, Y. L., Law, P. Y., & Loh, H. H. (2007). Action of NF-kappaB on the delta opioid receptor gene promoter. Biochemical and Biophysical Research Communications, 352(3), 818-822. https://doi.org/10.1016/j.bbrc.2006.11.103
Chen, Y. L., Law, P. Y., & Loh, H. H. (2008). NGF/PI3K signaling-mediated epigenetic regulation of delta opioid receptor gene expression. Biochemical and Biophysical Research Communications, 368(3), 755-760. https://doi.org/10.1016/j.bbrc.2008.01.164
Clark, S. L., Chan, R. F., Zhao, M., Xie, L. Y., Copeland, W. E., Penninx, B., Aberg, K. A., & van den Oord, E. (2022). Dual methylation and hydroxymethylation study of alcohol use disorder. Addiction Biology, 27(2), e13114. https://doi.org/10.1111/adb.13114
Cooper, S., Robison, A. J., & Mazei-Robison, M. S. (2017). Reward Circuitry in Addiction. Neurotherapeutics, 14(3), 687-697. https://doi.org/10.1007/s13311-017-0525-z
Covey, D. P., Roitman, M. F., & Garris, P. A. (2014). Illicit dopamine transients: reconciling actions of abused drugs. Trends in Neurosciences, 37(4), 200-210. https://doi.org/10.1016/j.tins.2014.02.002
Cox, B., Ary, M., & Lomax, P. (1976). Dopaminergic involvement in withdrawal hypothermia and thermoregulatory behavior in morphine dependent rats. Pharmacology Biochemistry and Behavior, 4(3), 259-262. https://doi.org/10.1016/0091-3057(76)90238-0
Cui, X. L., Nie, J., Ku, J., Dougherty, U., West-Szymanski, D. C., Collin, F., Ellison, C. K., Sieh, L., Ning, Y., Deng, Z., Zhao, C. W. T., Bergamaschi, A., Pekow, J., Wei, J., Beadell,
A. V., Zhang, Z., Sharma, G., Talwar, R., Arensdorf, P., . . . He, C. (2020). A human tissue map of 5-hydroxymethylcytosines exhibits tissue specificity through gene and enhancer modulation. Nature Communications, 11(1), 6161. https://doi.org/10.1038/s41467-020-20001-w
De Witte, P., Littleton, J., Parot, P., & Koob, G. (2005). Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. CNS Drugs, 19(6), 517-537. https://doi.org/10.2165/00023210-200519060-00004
Devine, D. P., & Wise, R. A. (1994). Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. The Journal of Neuroscience, 14(4), 1978-1984. https://doi.org/10.1523/JNEUROSCI.14-04-01978.1994
Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America, 85(14), 5274-5278. https://doi.org/10.1073/pnas.85.14.5274
Dunn, K. E., Huhn, A. S., Bergeria, C. L., Gipson, C. D., & Weerts, E. M. (2019). Non-Opioid Neurotransmitter Systems that Contribute to the Opioid Withdrawal Syndrome: A Review of Preclinical and Human Evidence. Journal of Pharmacology and Experimental Therapeutics, 371(2), 422-452. https://doi.org/10.1124/jpet.119.258004
Durieux, P. F., Bearzatto, B., Guiducci, S., Buch, T., Waisman, A., Zoli, M., Schiffmann, S. N., & de Kerchove d'Exaerde, A. (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nature Neuroscience, 12(4), 393-395. https://doi.org/10.1038/nn.2286
Egervari, G., Landry, J., Callens, J., Fullard, J. F., Roussos, P., Keller, E., & Hurd, Y. L. (2017). Striatal H3K27 Acetylation Linked to Glutamatergic Gene Dysregulation in Human Heroin Abusers Holds Promise as Therapeutic Target. Biological Psychiatry, 81(7), 585-594. https://doi.org/10.1016/j.biopsych.2016.09.015
el-Kadi, A. O., & Sharif, S. I. (1998). The role of dopamine in the expression of morphine withdrawal. General Pharmacology, 30(4), 499-505. https://doi.org/10.1016/s0306-3623(97)00286-3
Everitt, B. J., & Wolf, M. E. (2002). Psychomotor stimulant addiction: a neural systems perspective. The Journal of Neuroscience, 22(9), 3312-3320. https://doi.org/10.1523/JNEUROSCI.22-09-03312.2002
Gateway Foundation. (n.d.). DSM-5 Criteria for Substance Use Disorders. https://www.gatewayfoundation.org/addiction-blog/dsm-5-substance-use-disorder/
Ge, X. Q., Xu, P. C., & Bian, C. F. (1990). [Relationship between morphine-induced respiratory depression and the cholinergic system of respiratory center]. Yao Xue Xue
Bao, 25(8), 566-572. https://www.ncbi.nlm.nih.gov/pubmed/2082678
George, O., Sanders, C., Freiling, J., Grigoryan, E., Vu, S., Allen, C. D., Crawford, E., Mandyam, C. D., & Koob, G. F. (2012). Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 18156-18161. https://doi.org/10.1073/pnas.1116523109
Goeders, N. E., Lane, J. D., & Smith, J. E. (1984). Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacology Biochemistry and Behavior, 20(3), 451-455. https://doi.org/10.1016/0091-3057(84)90284-3
Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews
Neuroscience, 12(11), 652-669. https://doi.org/10.1038/nrn3119
Gross, J. A., Pacis, A., Chen, G. G., Drupals, M., Lutz, P. E., Barreiro, L. B., & Turecki, G. (2017). Gene-body 5-hydroxymethylation is associated with gene expression changes in the prefrontal cortex of depressed individuals. Translational Psychiatry, 7(5), e1119. https://doi.org/10.1038/tp.2017.93
Hamilton, P. J., & Nestler, E. J. (2019). Epigenetics and addiction. Current Opinion in Neurobiology, 59, 128-136. https://doi.org/10.1016/j.conb.2019.05.005
Hearing, M. (2019). Prefrontal-accumbens opioid plasticity: Implications for relapse and dependence. Pharmacological Research, 139, 158-165. https://doi.org/10.1016/j.phrs.2018.11.012
Herz, A., Blasig, J., & Papeschi, R. (1974). Role of catecholaminergic mechanisms in the expression of the morphine abstinence syndrome in rats. Psychopharmacologia, 39(2), 121-143. https://doi.org/10.1007/BF00440843
Hoffman, A. R., & Hu, J. F. (2006). Directing DNA methylation to inhibit gene expression. Cellular and Molecular Neurobiology, 26(4-6), 425-438. https://doi.org/10.1007/s10571-006-9057-5
Hou, Y. Y., Cai, Y. Q., & Pan, Z. Z. (2015). Persistent pain maintains morphine-seeking behavior after morphine withdrawal through reduced MeCP2 repression of GluA1 in rat central amygdala. The Journal of Neuroscience, 35(8), 3689-3700. https://doi.org/10.1523/JNEUROSCI.3453-14.2015
Jackson, A., Mead, A. N., & Stephens, D. N. (2000). Behavioural effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-receptor antagonists and their relevance to substance abuse. Pharmacology & Therapeutics, 88(1), 59-76. https://doi.org/10.1016/s0163-7258(00)00078-4
Jacobs, M. M., Okvist, A., Horvath, M., Keller, E., Bannon, M. J., Morgello, S., & Hurd, Y. L. (2013). Dopamine receptor D1 and postsynaptic density gene variants associate with opiate abuse and striatal expression levels. Molecular Psychiatry, 18(11), 1205-1210. https://doi.org/10.1038/mp.2012.140
Jalabert, M., Bourdy, R., Courtin, J., Veinante, P., Manzoni, O. J., Barrot, M., & Georges, F. (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16446-16450. https://doi.org/10.1073/pnas.1105418108
Jones, S., & Bonci, A. (2005). Synaptic plasticity and drug addiction. Current Opinion in Pharmacology, 5(1), 20-25. https://doi.org/10.1016/j.coph.2004.08.011
Kambur, O., Mannisto, P. T., Viljakka, K., Reenila, I., Lemberg, K., Kontinen, V. K., Karayiorgou, M., Gogos, J. A., & Kalso, E. (2008). Stress-induced analgesia and morphine responses are changed in catechol-O-methyltransferase-deficient male mice. Basic & Clinical Pharmacology & Toxicology, 103(4), 367-373. https://doi.org/10.1111/j.1742-7843.2008.00289.x
Kauer, J. A. (2004). Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annual Review of Physiology, 66, 447-475. https://doi.org/10.1146/annurev.physiol.66.032102.112534
Kelley, A. E., Andrzejewski, M. E., Baldwin, A. E., Hernandez, P. J., & Pratt, W. E. (2003). Glutamate-mediated plasticity in corticostriatal networks: role in adaptive motor learning. Annals of the New York Academy of Sciences, 1003, 159-168. https://doi.org/10.1196/annals.1300.061
Koob, G. F., Buck, C. L., Cohen, A., Edwards, S., Park, P. E., Schlosburg, J. E., Schmeichel, B., Vendruscolo, L. F., Wade, C. L., Whitfield, T. W., Jr., & George, O. (2014). Addiction as a stress surfeit disorder. Neuropharmacology, 76 Pt B(0 0), 370-382. https://doi.org/10.1016/j.neuropharm.2013.05.024
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217-238. https://doi.org/10.1038/npp.2009.110
Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry, 3(8), 760-773. https://doi.org/10.1016/S2215-0366(16)00104-8
Kourrich, S., Rothwell, P. E., Klug, J. R., & Thomas, M. J. (2007). Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. The Journal of Neuroscience, 27(30), 7921-7928. https://doi.org/10.1523/JNEUROSCI.1859-07.2007
Kozlenkov, A., Jaffe, A. E., Timashpolsky, A., Apontes, P., Rudchenko, S., Barbu, M., Byne, W., Hurd, Y. L., Horvath, S., & Dracheva, S. (2017). DNA Methylation Profiling of Human Prefrontal Cortex Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of Hyper- and Hypomethylation and a Younger Epigenetic Age. Genes, 8(6). https://doi.org/10.3390/genes8060152
Li, Y., Li, C. Y., Xi, W., Jin, S., Wu, Z. H., Jiang, P., Dong, P., He, X. B., Xu, F. Q., Duan, S., Zhou, Y. D., & Li, X. M. (2019). Rostral and Caudal Ventral Tegmental Area GABAergic Inputs to Different Dorsal Raphe Neurons Participate in Opioid Dependence. Neuron, 101(4), 748-761 e745. https://doi.org/10.1016/j.neuron.2018.12.012
Lu, L., Hope, B. T., Dempsey, J., Liu, S. Y., Bossert, J. M., & Shaham, Y. (2005). Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nature Neuroscience, 8(2), 212-219. https://doi.org/10.1038/nn1383
Madhavan, A., He, L., Stuber, G. D., Bonci, A., & Whistler, J. L. (2010). micro-Opioid receptor endocytosis prevents adaptations in ventral tegmental area GABA transmission induced during naloxone-precipitated morphine withdrawal. The Journal of Neuroscience, 30(9), 3276-3286. https://doi.org/10.1523/JNEUROSCI.4634-09.2010
Mashayekhi, F. J., Rasti, M., Rahvar, M., Mokarram, P., Namavar, M. R., & Owji, A. A. (2012). Expression levels of the BDNF gene and histone modifications around its promoters in the ventral tegmental area and locus ceruleus of rats during forced abstinence from morphine. Neurochemical Research, 37(7), 1517-1523. https://doi.org/10.1007/s11064-012-0746-9
Matthes, H. W., Maldonado, R., Simonin, F., Valverde, O., Slowe, S., Kitchen, I., Befort, K., Dierich, A., Le Meur, M., Dolle, P., Tzavara, E., Hanoune, J., Roques, B. P., & Kieffer, B. L. (1996). Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature, 383(6603), 819-823. https://doi.org/10.1038/383819a0
McDevitt, D. S., McKendrick, G., & Graziane, N. M. (2021). Anterior cingulate cortex is necessary for spontaneous opioid withdrawal and withdrawal-induced hyperalgesia in male mice. Neuropsychopharmacology, 46(11), 1990-1999. https://doi.org/10.1038/s41386-021-01118-y
McFarland, K., & Kalivas, P. W. (2001). The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. The Journal of Neuroscience, 21(21), 8655-8663. https://doi.org/10.1523/JNEUROSCI.21-21-08655.2001
McKendrick, G., Garrett, H., Jones, H. E., McDevitt, D. S., Sharma, S., Silberman, Y., & Graziane, N. M. (2020). Ketamine Blocks Morphine-Induced Conditioned Place Preference and Anxiety-Like Behaviors in Mice. Frontiers in Behavioral Neuroscience, 14, 75. https://doi.org/10.3389/fnbeh.2020.00075
Medrano, M. C., Mendiguren, A., & Pineda, J. (2015). Effect of ceftriaxone and topiramate treatments on naltrexone-precipitated morphine withdrawal and glutamate receptor desensitization in the rat locus coeruleus. Psychopharmacology (Berl), 232(15), 2795-2809. https://doi.org/10.1007/s00213-015-3913-2
Mysels, D., & Sullivan, M. A. (2009). The kappa-opiate receptor impacts the pathophysiology and behavior of substance use. The American Journal on Addictions, 18(4), 272-276. https://doi.org/10.1080/10550490902925862
Nguyen, C., Mondoloni, S., Le Borgne, T., Centeno, I., Come, M., Jehl, J., Solie, C., Reynolds, L. M., Durand-de Cuttoli, R., Tolu, S., Valverde, S., Didienne, S., Hannesse, B., Fiancette, J. F., Pons, S., Maskos, U., Deroche-Gamonet, V., Dalkara, D., Hardelin, J. P., . . . Faure, P. (2021). Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron, 109(16), 2604-2615 e2609. https://doi.org/10.1016/j.neuron.2021.06.013
Nielsen, D. A., Utrankar, A., Reyes, J. A., Simons, D. D., & Kosten, T. R. (2012). Epigenetics of drug abuse: predisposition or response. The Pharmacogenomics Journal, 13(10), 1149-1160. https://doi.org/10.2217/pgs.12.94
Norman, A. B., Tabet, M. R., Norman, M. K., Fey, B. K., Tsibulsky, V. L., & Millard, R. W. (2011). The affinity of D2-like dopamine receptor antagonists determines the time to maximal effect on cocaine self-administration. Journal of Pharmacology and Experimental Therapeutics, 338(2), 724-728. https://doi.org/10.1124/jpet.111.183244
Okvist, A., Fagergren, P., Whittard, J., Garcia-Osta, A., Drakenberg, K., Horvath, M. C., Schmidt, C. J., Keller, E., Bannon, M. J., & Hurd, Y. L. (2011). Dysregulated postsynaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers. Biological Psychiatry, 69(3), 245-252. https://doi.org/10.1016/j.biopsych.2010.09.037
Petrella, M., Borruto, A. M., Curti, L., Domi, A., Domi, E., Xu, L., Barbier, E., Ilari, A., Heilig, M., Weiss, F., Mannaioni, G., Masi, A., & Ciccocioppo, R. (2024). Pharmacological blockage of NOP receptors decreases ventral tegmental area dopamine neuronal activity through GABA(B) receptor-mediated mechanism. Neuropharmacology, 248, 109866. https://doi.org/10.1016/j.neuropharm.2024.109866
Reid, K. Z., Lemezis, B. M., Hou, T. C., & Chen, R. (2022). Epigenetic Modulation of Opioid Receptors by Drugs of Abuse. International Journal of Molecular Sciences, 23(19). https://doi.org/10.3390/ijms231911804
Rompala, G., Nagamatsu, S. T., Martinez-Magana, J. J., Nunez-Rios, D. L., Wang, J., Girgenti, M. J., Krystal, J. H., Gelernter, J., Traumatic Stress Brain Research, G., Hurd, Y. L., & Montalvo-Ortiz, J. L. (2023). Profiling neuronal methylome and hydroxymethylome of opioid use disorder in the human orbitofrontal cortex. Nature Communications, 14(1), 4544. https://doi.org/10.1038/s41467-023-40285-y
Sandoval-Sierra, J. V., Salgado Garcia, F. I., Brooks, J. H., Derefinko, K. J., & Mozhui, K. (2020). Effect of short-term prescription opioids on DNA methylation of the OPRM1 promoter. Clinical Epigenetics, 12(1), 76. https://doi.org/10.1186/s13148-020-00868-8
Schlosburg, J. E., Whitfield, T. W., Jr., Park, P. E., Crawford, E. F., George, O., Vendruscolo, L. F., & Koob, G. F. (2013). Long-term antagonism of kappa opioid receptors prevents escalation of and increased motivation for heroin intake. The Journal of Neuroscience, 33(49), 19384-19392. https://doi.org/10.1523/JNEUROSCI.1979-13.2013
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599. https://doi.org/10.1126/science.275.5306.1593
Sekiya, Y., Nakagawa, T., Ozawa, T., Minami, M., & Satoh, M. (2004). Facilitation of morphine withdrawal symptoms and morphine-induced conditioned place preference by a glutamate transporter inhibitor DL-threo-beta-benzyloxyaspartate in rats. European Journal of Pharmacology, 485(1-3), 201-210. https://doi.org/10.1016/j.ejphar.2003.11.062
Sheng, J., Lv, Z., Wang, L., Zhou, Y., & Hui, B. (2011). Histone H3 phosphoacetylation is critical for heroin-induced place preference. NeuroReport, 22(12), 575-580. https://doi.org/10.1097/WNR.0b013e328348e6aa
Shippenberg, T. S., & Elmer, G. I. (1998). The neurobiology of opiate reinforcement. Critical Reviews in Neurobiology, 12(4), 267-303. https://doi.org/10.1615/critrevneurobiol.v12.i4.10
Shippenberg, T. S., LeFevour, A., & Chefer, V. I. (2008). Targeting endogenous mu- and delta-opioid receptor systems for the treatment of drug addiction. CNS & Neurological Disorders - Drug Targets, 7(5), 442-453. https://doi.org/10.2174/187152708786927813
State Health Access Data Assistance Center. (2024). The opioid epidemic in the United States. https://www.shadac.org/opioid-epidemic-united-states
Sun, H., Maze, I., Dietz, D. M., Scobie, K. N., Kennedy, P. J., Damez-Werno, D., Neve, R. L., Zachariou, V., Shen, L., & Nestler, E. J. (2012). Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. The Journal of Neuroscience, 32(48), 17454-17464. https://doi.org/10.1523/JNEUROSCI.1357-12.2012
Sun, L., Zhao, J. Y., Gu, X., Liang, L., Wu, S., Mo, K., Feng, J., Guo, W., Zhang, J., Bekker, A., Zhao, X., Nestler, E. J., & Tao, Y. X. (2017). Nerve injury-induced epigenetic silencing of opioid receptors controlled by DNMT3a in primary afferent neurons. Pain, 158(6), 1153-1165. https://doi.org/10.1097/j.pain.0000000000000894
Tokuyama, S., Wakabayashi, H., & Ho, I. K. (1996). Direct evidence for a role of glutamate in the expression of the opioid withdrawal syndrome. European Journal of Pharmacology, 295(2-3), 123-129. https://doi.org/10.1016/0014-2999(95)00645-1
Tokuyama, S., Zhu, H., Wakabayashi, H., Feng, Y. Z., & Ho, I. K. (1998). The role of glutamate in the locus coeruleus during opioid withdrawal and effects of H-7, a protein kinase inhibitor, on the action of glutamate in rats. Journal of Biomedical Science, 5(1), 45-53. https://doi.org/10.1007/BF02253355
Tsui, J. I., Lira, M. C., Cheng, D. M., Winter, M. R., Alford, D. P., Liebschutz, J. M., Edwards, R. R., & Samet, J. H. (2016). Chronic pain, craving, and illicit opioid use among patients receiving opioid agonist therapy. Drug and Alcohol Dependence, 166, 26-31. https://doi.org/10.1016/j.drugalcdep.2016.06.024
Ungless, M. A., Whistler, J. L., Malenka, R. C., & Bonci, A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 411(6837), 583-587. https://doi.org/10.1038/35079077
Valdez, G. R., Roberts, A. J., Chan, K., Davis, H., Brennan, M., Zorrilla, E. P., & Koob, G. F. (2002). Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Alcoholism: Clinical and Experimental Research, 26(10), 1494-1501. https://doi.org/10.1097/01.ALC.0000033120.51856.F0
Van den Oever, M. C., Spijker, S., Smit, A. B., & De Vries, T. J. (2010). Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci & Biobehavioral Reviews, 35(2), 276-284. https://doi.org/10.1016/j.neubiorev.2009.11.016
Vanderschuren, L. J., Di Ciano, P., & Everitt, B. J. (2005). Involvement of the dorsal striatum in cue-controlled cocaine seeking. The Journal of Neuroscience, 25(38), 8665-8670. https://doi.org/10.1523/JNEUROSCI.0925-05.2005
Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: insights from imaging studies. Journal of Clinical Investigation, 111(10), 1444-1451. https://doi.org/10.1172/JCI18533
Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15037-15042. https://doi.org/10.1073/pnas.1010654108
Vorel, S. R., Liu, X., Hayes, R. J., Spector, J. A., & Gardner, E. L. (2001). Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science, 292(5519), 1175-1178. https://doi.org/10.1126/science.1058043
Walker, B. M., & Koob, G. F. (2008). Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol dependence. Neuropsychopharmacology, 33(3), 643-652. https://doi.org/10.1038/sj.npp.1301438
Wang, G., Wei, L. N., & Loh, H. H. (2003). Transcriptional regulation of mouse delta-opioid receptor gene by CpG methylation: involvement of Sp3 and a methyl-CpG-binding protein, MBD2, in transcriptional repression of mouse delta-opioid receptor gene in Neuro2A cells. Journal of Biological Chemistry, 278(42), 40550-40556. https://doi.org/10.1074/jbc.M302879200
Wang, T., Pan, Q., Lin, L., Szulwach, K. E., Song, C. X., He, C., Wu, H., Warren, S. T., Jin, P., Duan, R., & Li, X. (2012). Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum. Human Molecular Genetics, 21(26), 5500-5510. https://doi.org/10.1093/hmg/dds394
Wang, W., Xie, X., Zhuang, X., Huang, Y., Tan, T., Gangal, H., Huang, Z., Purvines, W., Wang, X., Stefanov, A., Chen, R., Rodriggs, L., Chaiprasert, A., Yu, E., Vierkant, V., Hook, M., Huang, Y., Darcq, E., & Wang, J. (2023). Striatal mu-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Reports, 42(2), 112089. https://doi.org/10.1016/j.celrep.2023.112089
Wang, Z., Yan, P., Hui, T., & Zhang, J. (2014). Epigenetic upregulation of PSD-95 contributes to the rewarding behavior by morphine conditioning. European Journal of Pharmacology, 732, 123-129. https://doi.org/10.1016/j.ejphar.2014.03.040
Whitfield, T. W., Jr., Schlosburg, J. E., Wee, S., Gould, A., George, O., Grant, Y., Zamora-Martinez, E. R., Edwards, S., Crawford, E., Vendruscolo, L. F., & Koob, G. F. (2015). kappa Opioid receptors in the nucleus accumbens shell mediate escalation of methamphetamine intake. The Journal of Neuroscience, 35(10), 4296-4305. https://doi.org/10.1523/JNEUROSCI.1978-13.2015
World Health Organization. (2023). Opioid overdose. https://www.who.int/news-room/fact-sheets/detail/opioid-overdose
Zhang, M., Kimatu, J. N., Xu, K., & Liu, B. (2010). DNA cytosine methylation in plant development. Journal of Genetics and Genomics, 37(1), 1-12. https://doi.org/10.1016/S1673-8527(09)60020-5
Zheng, F., Grandy, D. K., & Johnson, S. W. (2002). Actions of orphanin FQ/nociceptin on rat ventral tegmental area neurons in vitro. British Journal of Pharmacology, 136(7), 1065-1071. https://doi.org/10.1038/sj.bjp.0704806
Zweifel, L. S., Fadok, J. P., Argilli, E., Garelick, M. G., Jones, G. L., Dickerson, T. M., Allen, J. M., Mizumori, S. J., Bonci, A., & Palmiter, R. D. (2011). Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nature Neuroscience, 14(5), 620-626. https://doi.org/10.1038/nn.2808
Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., Darvas, M., Kim, M. J., Mizumori, S. J., Paladini, C. A., Phillips, P. E., & Palmiter, R. D. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7281-7288. https://doi.org/10.1073/pnas.0813415106
Downloads
Posted
Categories
License
Copyright (c) 2024 Solomon Kim
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.