Molecular Mechanisms Underlying Tau Pathology and Disease Progression in Alzheimer’s Disease and Chronic Traumatic Encephalopathy
Deciphering Molecular Characteristic for Therapeutic Target in Tauopathies
DOI:
https://doi.org/10.58445/rars.1457Keywords:
Tau protein, Alzheimer's Disease, Chronic Traumatic Encephalopathy, Neurodegenerative Disease, Biomarkers, Therapeutic TreatmentAbstract
Tauopathies, a division of neurodegenerative diseases defined by the deposition and aggregation of abnormal tau protein, include a diverse array of conditions that pose a relevant and withstanding concern in neurobiology and medicine. While associated tauopathies may share similar pathological features such as abnormal aggregation of tau protein, they differ in their clinical presentation, molecular mechanisms, and neuropathological patterns. Thus, highlighting the similarities and differences in the isoform variations and molecular pathology of tauopathies is crucial for advancing knowledge in the field and implying therapeutics. This review will comparatively outline the important molecular characteristics of Alzheimer's Disease (AD) Chronic Traumatic Encephalopathy (CTE) by identifying their neuropathology, dominant isoform significance, post-translational modifications, and cellular response. Thus, this review aims to provide a detailed analysis of the current knowledge surrounding tauopathies, highlight areas for future research, and emphasize the broader implications for the field of neurodegenerative disease. With enhanced comprehension of the mechanisms that underlie these diseases, diagnostic measures, potential biomarkers, treatments, and preventions may be improved through identifying unifying characteristics. Conversely, understanding the molecular differences of tauopathies may not only enhance our understanding of these diseases, but also differential treatment mechanisms specific to each tauopathy.
References
Alquezar, C., Arya, S., & Kao, A. W. (2021). Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.595532
Alyenbaawi, H., Allison, W. T., & Mok, S.-A. (2020). Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules, 10(11), 1487. https://doi.org/10.3390/biom10111487
Alzheimer's & Dementia. (2024). 2024 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. https://doi.org/10.1002/alz.13809
Alzheimer's Disease International. (n.d.). ADI - Dementia statistics. Alzheimer’s Disease International. https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/#:~:text=Numbers%20of%20people%20with%20dementia&text=There%20are%20over%2055%20million
Amro, Z., Yool, A. J., & Collins-Praino, L. E. (2021). The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain, Behavior, & Immunity - Health, 14, 100242. https://doi.org/10.1016/j.bbih.2021.100242
Antonius, D., Mathew, N., Picano, J., Hinds, A., Cogswell, A., Olympia, J., Brooks, T., DiGiacomo, M., Baker, J., Willer, B., & Leddy, J. (2014). Behavioral Health Symptoms Associated With Chronic Traumatic Encephalopathy: A Critical Review of the Literature and Recommendations for Treatment and Research. The Journal of Neuropsychiatry and Clinical Neurosciences, 26(4), 313–322. https://doi.org/10.1176/appi.neuropsych.13090201
Archie, S. R., Al Shoyaib, A., & Cucullo, L. (2021). Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics, 13(11), 1779. https://doi.org/10.3390/pharmaceutics13111779
Atkins, C. M., Chen, S., Alonso, O. F., Dietrich, W. D., & Hu, B.-R. (2006). Activation of Calcium/Calmodulin-Dependent Protein Kinases after Traumatic Brain Injury. Journal of Cerebral Blood Flow & Metabolism, 26(12), 1507–1518. https://doi.org/10.1038/sj.jcbfm.9600301
Avila, J. (2010). Intracellular and extracellular tau. Frontiers in Neuroscience, 4. https://doi.org/10.3389/fnins.2010.00049
Bamford, R. A., Widagdo, J., Takamura, N., Eve, M., Anggono, V., & Oguro-Ando, A. (2020). The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience, 424, 184–202. https://doi.org/10.1016/j.neuroscience.2019.10.006
Bartolome, F., Carro, E., & Alquezar, C. (2022). Oxidative Stress in Tauopathies: From Cause to Therapy. Antioxidants, 11(8), 1421. https://doi.org/10.3390/antiox11081421
Blagov, A. V., Grechko, A. V., Nikiforov, N. G., Borisov, E. E., Sadykhov, N. K., & Orekhov, A. N. (2022). Role of Impaired Mitochondrial Dynamics Processes in the Pathogenesis of Alzheimer’s Disease. International Journal of Molecular Sciences, 23(13), 6954. https://doi.org/10.3390/ijms23136954
Bodea, L.-G., Eckert, A., Ittner, L. M., Piguet, O., & Götz, J. (2016). Tau physiology and pathomechanisms in frontotemporal lobar degeneration. Journal of Neurochemistry, 138(S1), 71–94. https://doi.org/10.1111/jnc.13600
Bosch-Bouju, C., Hyland, B. I., & Parr-Brownlie, L. C. (2013). Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Frontiers in Computational Neuroscience, 7. https://doi.org/10.3389/fncom.2013.00163
Boston University. (2017, August 22). Evidence of CTE Found in Brains of Deceased Football Players | SPH. Www.bu.edu. https://www.bu.edu/sph/news/articles/2017/evidence-of-cte-found-in-brains-of-deceased-football-players/
Boyko, M., Gruenbaum, B. F., Frank, D., Natanel, D., Negev, S., Azab, A. N., Barsky, G., Knyazer, B., Kofman, O., & Zlotnik, A. (2023). The Integrity of the Blood–Brain Barrier as a Critical Factor for Regulating Glutamate Levels in Traumatic Brain Injury. International Journal of Molecular Sciences, 24(6), 5897. https://doi.org/10.3390/ijms24065897
Boyne, L. J., Tessler, A., Murray, M., & Fischer, I. (1995). Distribution of big tau in the central nervous system of the adult and developing rat. The Journal of Comparative Neurology, 358(2), 279–293. https://doi.org/10.1002/cne.903580209
Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389–404. https://doi.org/10.1007/s00401-006-0127-z
Bruggeman, G. F., Haitsma, I. K., Dirven, C. M. F., & Volovici, V. (2020). Traumatic axonal injury (TAI): definitions, pathophysiology and imaging—a narrative review. Acta Neurochirurgica, 163(1), 31–44. https://doi.org/10.1007/s00701-020-04594-1
Buchholz, S., & Zempel, H. (2024). The six brain‐specific TAU isoforms and their role in Alzheimer’s disease and related neurodegenerative dementia syndromes. Alzheimer’s & Dementia. https://doi.org/10.1002/alz.13784
Castellani, R. J., Perry, G., & Iverson, G. L. (2015). Chronic Effects of Mild Neurotrauma. Journal of Neuropathology & Experimental Neurology, 74(6), 493–499. https://doi.org/10.1097/nen.0000000000000193
Cheng, P., Wu, Y., Wong, T., Sun, G., & Tseng, C. (2021). Mechanical Stretching-Induced Traumatic Brain Injury Is Mediated by the Formation of GSK-3β-Tau Complex to Impair Insulin Signaling Transduction. Biomedicines, 9(11), 1650–1650. https://doi.org/10.3390/biomedicines9111650
Cherry, J. D., Esnault, C. D., Baucom, Z. H., Tripodis, Y., Huber, B. R., Alvarez, V. E., Stein, T. D., Dickson, D. W., & McKee, A. C. (2021). Tau isoforms are differentially expressed across the hippocampus in chronic traumatic encephalopathy and Alzheimer’s disease. Acta Neuropathologica Communications, 9(1). https://doi.org/10.1186/s40478-021-01189-4
Chodobski, A., Zink, B. J., & Szmydynger-Chodobska, J. (2011). Blood–Brain Barrier Pathophysiology in Traumatic Brain Injury. Translational Stroke Research, 2(4), 492–516. https://doi.org/10.1007/s12975-011-0125-x
Cloak, N., & Al Khalili, Y. (2022, July 21). Behavioral And Psychological Symptoms In Dementia (BPSD). PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551552/
Cohen, T. J., Guo, J. L., Hurtado, D. E., Kwong, L. K., Mills, I. P., Trojanowski, J. Q., & Lee, V. M. Y. (2011). The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nature Communications, 2(1). https://doi.org/10.1038/ncomms1255
Cunningham, E. L., McGuinness, B., Herron, B., & Passmore, A. P. (2015). Dementia. The Ulster Medical Journal, 84(2), 79–87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488926/
Davidson, R., Krider, R. I., Borsellino, P., Noorda, K., Alhwayek, G., & Vida, T. A. (2023). Untangling Tau: Molecular Insights into Neuroinflammation, Pathophysiology, and Emerging Immunotherapies. Current Issues in Molecular Biology, 45(11), 8816–8839. https://doi.org/10.3390/cimb45110553
De Sousa, A., Brier, Graff, E. C., Rania Mohamedelhassan, Tatianna Vassilopoulos, & Charvet, C. J. (2023). Going beyond established model systems of Alzheimer’s disease: companion animals provide novel insights into the neurobiology of aging. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-05034-3
Dickerson, B. C., & Eichenbaum, H. (2009). The Episodic Memory System: Neurocircuitry and Disorders. Neuropsychopharmacology, 35(1), 86–104. https://doi.org/10.1038/npp.2009.126
Gandy, S., Ikonomovic, M. D., Mitsis, E., Elder, G., Ahlers, S. T., Barth, J., Stone, J. R., & DeKosky, S. T. (2014). Chronic traumatic encephalopathy: clinical‐biomarker correlations and current concepts in pathogenesis. Molecular Neurodegeneration, 9(1), 37. https://doi.org/10.1186/1750-1326-9-37
Goedert, M., Spillantini, M. G., Potier, M. C., Ulrich, J., & Crowther, R. A. (1989). Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. The EMBO Journal, 8(2), 393–399. https://doi.org/10.1002/j.1460-2075.1989.tb03390.x
Gong, C.-X. ., & Iqbal, K. (2008). Hyperphosphorylation of Microtubule-Associated Protein Tau: A Promising Therapeutic Target for Alzheimer Disease. Current Medicinal Chemistry, 15(23), 2321–2328. https://doi.org/10.2174/092986708785909111
Graham, N. S., & Sharp, D. J. (2019). Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. Journal of Neurology, Neurosurgery & Psychiatry, 90(11), 1221–1233. https://doi.org/10.1136/jnnp-2017-317557
Grider, M. H., Jessu, R., & Kabir, R. (2023, May 8). Physiology, Action Potential. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK538143/
Gulisano, W., Maugeri, D., Baltrons, M. A., Fà, M., Amato, A., Palmeri, A., D’Adamio, L., Grassi, C., Devanand, D. P., Honig, L. S., Puzzo, D., & Arancio, O. (2018). Role of Amyloid-β and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade. Journal of Alzheimer’s Disease, 64(s1), S611–S631. https://doi.org/10.3233/jad-179935
Guo, T., Zhang, D., Zeng, Y., Huang, T. Y., Xu, H., & Zhao, Y. (2020). Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Molecular Neurodegeneration, 15(1). https://doi.org/10.1186/s13024-020-00391-7
Haj-Yahya, M., & Lashuel, H. A. (2018). Protein Semisynthesis Provides Access to Tau Disease-Associated Post-translational Modifications (PTMs) and Paves the Way to Deciphering the Tau PTM Code in Health and Diseased States. Journal of the American Chemical Society, 140(21), 6611–6621. https://doi.org/10.1021/jacs.8b02668
Halicki, M. J., Hind, K., & Chazot, P. L. (2023). Blood-Based Biomarkers in the Diagnosis of Chronic Traumatic Encephalopathy: Research to Date and Future Directions. International Journal of Molecular Sciences, 24(16), 12556–12556. https://doi.org/10.3390/ijms241612556
Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P., Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & Vergallo, A. (2021). The Amyloid-β Pathway in Alzheimer’s Disease. Molecular Psychiatry, 26(10). https://doi.org/10.1038/s41380-021-01249-0
Hartmann, D. (2024). Functional Roles of APP Secretases. Nih.gov; Landes Bioscience. https://www.ncbi.nlm.nih.gov/books/NBK6221/
Hedieh Shahpasand‐Kroner, Portillo, J., Lantz, C., Seidler, P., Sarafian, N., Loo, J. A., & Gal Bitan. (2022). Three‐repeat and four‐repeat tau isoforms form different oligomers. 31(3), 613–627. https://doi.org/10.1002/pro.4257
Hernández, F., & Avila, J. (2007). Tauopathies. Cellular and Molecular Life Sciences, 64(17), 2219–2233. https://doi.org/10.1007/s00018-007-7220-x
Holper, S., Watson, R., & Nawaf Yassi. (2022). Tau as a Biomarker of Neurodegeneration. International Journal of Molecular Sciences, 23(13), 7307–7307. https://doi.org/10.3390/ijms23137307
Inserra, C. J., & DeVrieze, B. W. (2019, June 21). Chronic Traumatic Encephalopathy (CTE, Sports-related Traumatic Brain Injury, TBI, Pugilistica Dementia). Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK470535/
Itoh, S. G., Maho Yagi-Utsumi, Kato, K., & Okumura, H. (2022). Key Residue for Aggregation of Amyloid-β Peptides. ACS Chemical Neuroscience, 13(22), 3139–3151. https://doi.org/10.1021/acschemneuro.2c00358
Jahan, I., Adachi, R., Egawa, R., Nomura, H., & Kuba, H. (2023). CDK5/p35-Dependent Microtubule Reorganization Contributes to Homeostatic Shortening of the Axon Initial Segment. The Journal of Neuroscience, 43(3), 359–372. https://doi.org/10.1523/JNEUROSCI.0917-22.2022
Jean‐Pierre Bellier, Cai, Y., Alam, S. M., Wiederhold, T., Aiello, A., Vogelgsang, J. S., Berretta, S., Chhatwal, J. P., Selkoe, D. J., & Liu, L. (2023). Uncovering elevated tau TPP motif phosphorylation in the brain of Alzheimer’s disease patients. Alzheimer S & Dementia, 20(3), 1573–1585. https://doi.org/10.1002/alz.13557
Kimura, T., Ishiguro, K., & Hisanaga, S. (2014). Physiological and pathological phosphorylation of tau by Cdk5. Frontiers in Molecular Neuroscience, 7. https://doi.org/10.3389/fnmol.2014.00065
Kimura, T., Whitcomb, D. J., Jo, J., Regan, P., Piers, T., Heo, S., Brown, C., Hashikawa, T., Murayama, M., Seok, H., Sotiropoulos, I., Kim, E., Collingridge, G. L., Takashima, A., & Cho, K. (2014). Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1633), 20130144. https://doi.org/10.1098/rstb.2013.0144
Kolarova, M., García-Sierra, F., Bartos, A., Ricny, J., & Ripova, D. (2012). Structure and Pathology of Tau Protein in Alzheimer Disease. International Journal of Alzheimer’s Disease, 2012, 1–13. https://doi.org/10.1155/2012/731526
Krishnamurthy, K., & Laskowitz, D. T. (2016). Cellular and Molecular Mechanisms of Secondary Neuronal Injury following Traumatic Brain Injury (D. Laskowitz & G. Grant, Eds.). PubMed; CRC Press/Taylor and Francis Group. https://www.ncbi.nlm.nih.gov/books/NBK326718/
Kumar, A., Sidhu, J., Goyal, A., & Tsao, J. W. (2022). Alzheimer Disease. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK499922/#:~:text=Alzheimer%20disease%20(AD)%20is%20the
Lakhan, S. E., & Kirchgessner, A. (2012). Chronic traumatic encephalopathy: the dangers of getting “dinged.” SpringerPlus, 1(1). https://doi.org/10.1186/2193-1801-1-2
Lasser, M., Tiber, J., & Lowery, L. A. (2018). The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00165
McKee, A. C., Stein, T. D., Kiernan, P. T., & Alvarez, V. E. (2015). The Neuropathology of Chronic Traumatic Encephalopathy. Brain Pathology, 25(3), 350–364. https://doi.org/10.1111/bpa.12248
McKee, A. C., Stein, T. D., Nowinski, C. J., Stern, R. A., Daneshvar, D. H., Alvarez, V. E., Lee, H.-S., Hall, G., Wojtowicz, S. M., Baugh, C. M., Riley, D. O., Kubilus, C. A., Cormier, K. A., Jacobs, M. A., Martin, B. R., Abraham, C. R., Ikezu, T., Reichard, R. R., Wolozin, B. L., & Budson, A. E. (2012). The spectrum of disease in chronic traumatic encephalopathy. Brain, 136(1), 43–64. https://doi.org/10.1093/brain/aws307
Medeiros, R., Baglietto-Vargas, D., & LaFerla, F. M. (2010). The Role of Tau in Alzheimer’s Disease and Related Disorders. CNS Neuroscience & Therapeutics, 17(5), 514–524. https://doi.org/10.1111/j.1755-5949.2010.00177.x
Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., & Niewiadomska, G. (2014). Tau Protein Modifications and Interactions: Their Role in Function and Dysfunction. International Journal of Molecular Sciences, 15(3), 4671–4713. https://doi.org/10.3390/ijms15034671
Min, S.-W., Chen, X., Tracy, T. E., Li, Y., Zhou, Y., Wang, C., Shirakawa, K., Minami, S. S., Defensor, E., Mok, S. A., Sohn, P. D., Schilling, B., Cong, X., Ellerby, L., Gibson, B. W., Johnson, J., Krogan, N., Shamloo, M., Gestwicki, J., & Masliah, E. (2015). Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nature Medicine, 21(10), 1154–1162. https://doi.org/10.1038/nm.3951
Montenigro, P. H., Bernick, C., & Cantu, R. C. (2015). Clinical Features of Repetitive Traumatic Brain Injury and Chronic Traumatic Encephalopathy. Brain Pathology, 25(3), 304–317. https://doi.org/10.1111/bpa.12250
Nadel, C. M., Wucherer, K., Oehler, A., Thwin, A. C., Basu, K., Callahan, M. D., Southworth, D. R., Mordes, D. A., Craik, C. S., & Gestwicki, J. E. (2023). Phosphorylation of a Cleaved Tau Proteoform at a Single Residue Inhibits Binding to the E3 Ubiquitin Ligase, CHIP. BioRxiv, 2023.08.16.553575. https://doi.org/10.1101/2023.08.16.553575
National Institute on Aging. (2023, April 5). Alzheimer’s Disease fact sheet. National Institute on Aging. https://www.nia.nih.gov/health/alzheimers-and-dementia/alzheimers-disease-fact-sheet
Nelson, P. T., Braak, H., & Markesbery, W. R. (2009). Neuropathology and Cognitive Impairment in Alzheimer Disease: A Complex but Coherent Relationship. Journal of Neuropathology and Experimental Neurology, 68(1), 1–14. https://doi.org/10.1097/NEN.0b013e3181919a48
Neve, R. L., Harris, P., Kosik, K. S., Kurnit, D. M., & Donlon, T. A. (1986). Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Molecular Brain Research, 1(3), 271–280. https://doi.org/10.1016/0169-328x(86)90033-1
Park, J., Lee, K., Kim, K., & Yi, S.-J. (2022). The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01078-9
Pevalova, M., Filipcik, P., Novak, M., Avila, J., & Iqbal, K. (2006). Post-translational modifications of tau protein. Bratislavske Lekarske Listy, 107(9-10), 346–353. https://pubmed.ncbi.nlm.nih.gov/17262986/#:~:text=In%20human%2C%20tau%20protein%20undergoes
Rajmohan, R., & Reddy, P. H. (2017). Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer’s disease Neurons. Journal of Alzheimer’s Disease, 57(4), 975–999. https://doi.org/10.3233/jad-160612
Rawat, P., Sehar, U., Bisht, J., Selman, A., Culberson, J., & Reddy, P. H. (2022). Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. International Journal of Molecular Sciences, 23(21), 12841. https://doi.org/10.3390/ijms232112841
Robbins, M., Clayton, E., & Kaminski Schierle, G. S. (2021). Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathologica Communications, 9(1). https://doi.org/10.1186/s40478-021-01246-y
Safinia, C., Bershad, E. M., Clark, H. B., SantaCruz, K., Alakbarova, N., Suarez, J. I., & Divani, A. A. (2016). Chronic Traumatic Encephalopathy in Athletes Involved with High-impact Sports. Journal of Vascular and Interventional Neurology, 9(2), 34–48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094259/
Salvadó, G., Horie, K., Barthélemy, N. R., Vogel, J. W., Alexa Pichet Binette, Chen, C. D., Aschenbrenner, A. J., Gordon, B. A., Tammie L.S. Benzinger, Holtzman, D. M., Morris, J. C., Palmqvist, S., Stomrud, E., Bateman, R. J., Rik Ossenkoppele, Schindler, S. E., Bateman, R. J., & Hansson, O. (2023). Novel CSF tau biomarkers can be used for disease staging of sporadic Alzheimer’s disease. MedRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2023.07.14.23292650
Sayas, C. L., & Ávila, J. (2021). GSK-3 and Tau: A Key Duet in Alzheimer’s Disease. Cells, 10(4), 721. https://doi.org/10.3390/cells10040721
Siddappaji, K. K., & Gopal, S. (2021). Molecular mechanisms in Alzheimer’s disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neuroscience, 8(3), 357–389. https://doi.org/10.3934/neuroscience.2021020
Sinsky, J., Pichlerova, K., & Hanes, J. (2021). Tau Protein Interaction Partners and Their Roles in Alzheimer’s Disease and Other Tauopathies. International Journal of Molecular Sciences, 22(17), 9207. https://doi.org/10.3390/ijms22179207
Stern, J. L., Lessard, D. V., Hoeprich, G. J., Morfini, G. A., & Berger, C. L. (2017). Phosphoregulation of Tau modulates inhibition of kinesin-1 motility. Molecular Biology of the Cell, 28(8), 1079–1087. https://doi.org/10.1091/mbc.e16-10-0728
Stevenson, R., Samokhina, E., Rossetti, I., Morley, J. W., & Buskila, Y. (2020). Neuromodulation of Glial Function During Neurodegeneration. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/fncel.2020.00278
Strang, K. H., Golde, T. E., & Giasson, B. I. (2019). MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Laboratory Investigation, 99(7), 912–928. https://doi.org/10.1038/s41374-019-0197-x
Targa Dias Anastacio, H., Matosin, N., & Ooi, L. (2022). Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Translational Psychiatry, 12(1). https://doi.org/10.1038/s41398-022-02024-7
Timm, T., Marx, A., Panneerselvam, S., Mandelkow, E., & Mandelkow, E.-M. (2008). Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neuroscience, 9(S2). https://doi.org/10.1186/1471-2202-9-s2-s9
VandeVrede, L., Boxer, A. L., & Polydoro, M. (2020). Targeting tau: Clinical trials and novel therapeutic approaches. Neuroscience Letters, 731, 134919. https://doi.org/10.1016/j.neulet.2020.134919
Veenith, T., Goon, S. S., & Burnstein, R. M. (2009). Molecular mechanisms of traumatic brain injury: the missing link in management. World Journal of Emergency Surgery, 4(1). https://doi.org/10.1186/1749-7922-4-7
Vourkou, E., Paspaliaris, V., Bourouliti, A., Zerva, M.-C., Prifti, E., Papanikolopoulou, K., & Skoulakis, E. M. C. (2022). Differential Effects of Human Tau Isoforms to Neuronal Dysfunction and Toxicity in the Drosophila CNS. International Journal of Molecular Sciences, 23(21), 12985. https://doi.org/10.3390/ijms232112985
Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences, 72(5), 1858–1862. https://doi.org/10.1073/pnas.72.5.1858
Wolfe, M. S. (2012). The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target. Scientifica, 2012, 1–20. https://doi.org/10.6064/2012/796024
Wu, M., Zhang, M., Yin, X., Chen, K., Hu, Z., Zhou, Q., Cao, X., Chen, Z., & Liu, D. (2021). The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases. Translational Neurodegeneration, 10(1). https://doi.org/10.1186/s40035-021-00270-1
Yurie Fukiyama, Hirokawa, T., Takai, S., Kida, T., & Oku, H. (2023). Involvement of Glycogen Synthase Kinase 3β (GSK3β) in Formation of Phosphorylated Tau and Death of Retinal Ganglion Cells of Rats Caused by Optic Nerve Crush. Current Issues in Molecular Biology, 45(9), 6941–6957. https://doi.org/10.3390/cimb45090438
Zhong, Q., Xiao, X., Qiu, Y., Xu, Z., Chen, C., Chong, B., Zhao, X., Hai, S., Li, S., An, Z., & Dai, L. (2023). Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm, 4(3). https://doi.org/10.1002/mco2.261
Downloads
Posted
Categories
License
Copyright (c) 2024 Elle Scord
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.