Preprint / Version 1

The Role of Epigenetic Modifications and HDAC Inhibitors in Glioblastoma Multiforme (GBM)

##article.authors##

  • Rashmitha Bathina Horizon High School

DOI:

https://doi.org/10.58445/rars.1391

Keywords:

Glioblastoma multiforme, neuro-oncology, HDAC Inhibitors

Abstract

Glioblastoma Multiforme (GBM) is one of the most formidable forms of brain tumors due to its highly aggressive nature, rapid proliferation, and resistance to conventional therapies. Histone deacetylases (HDACs) regulate chromatin structure and gene expression, and they have been associated with the silencing of tumor suppressor genes and promotion of cell survival. Although HDAC inhibition has shown some promise in preclinical studies, the specific mechanisms through which HDACs influence GBM cell behavior and the most effective strategies for HDAC inhibition remain poorly understood. There is a lack of research surrounding the optimal conditions for therapeutic efficiency of HDACs for cancer and a lack of comprehensive understanding of how HDACs impact GBM cell proliferation, survival, and gene expression.There is a lack of comprehensive understanding regarding how inhibiting HDACs impacts GBM cell proliferation, survival, and gene expression, as well as the optimal conditions for therapeutic efficacy.

References

Bender, S., Tang, Y., Lindroth, A. M., Hovestadt, V., Jones, D. T. W., Kool, M., ... & Lichter, P. (2013). Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant gliomas. Nature Genetics, 45(6), 626-630. https://doi.org/10.1038/ng.2605

Chen, R., Zhang, M., Zhou, Y., Guo, W., Yi, M., Zhang, Z., Ding, Y., & Wang, Y. (2020). The application of histone deacetylases inhibitors in glioblastoma. Journal of Experimental & Clinical Cancer Research, 39(1). https://doi.org/10.1186/s13046-020-01643-6

Chinnaiyan, P., Kensicki, E., Bloom, G., Prabhu, A., Sarcar, B., Kahali, S., ... & Chakravarti, A. (2012). The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Research, 72(22), 5878-5888. https://doi.org/10.1158/0008-5472.CAN-12-0858

Hegi, M. E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., Weller, M., ... & Stupp, R. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. New England Journal of Medicine, 352(10), 997-1003. https://doi.org/10.1056/NEJMoa043331

Kim, E. L., Wüstenberg, R., Rubsam, B., Schmid, K. W., Sabel, M. C., Sperling, S., ... & Kampe, B. (2011). Nimotuzumab inhibits the epidermal growth factor receptor in glioma cells of established and primary cultures, but induces apoptosis only in established cell lines. Cancer Research, 71(8), 2351-2359. https://doi.org/10.1158/0008-5472.CAN-10-2588

Lee, D. H., Ryu, H.-W., Won, H.-R., & Kwon, S. H. (2017). Advances in epigenetic glioblastoma therapy. Oncotarget, 8(11), 18577–18589. https://doi.org/10.18632/oncotarget.14612

Lee, P., Murphy, B., Miller, R., Menon, V., Banik, N. L., Giglio, P., Lindhorst, S. M., Varma, A. K., Vandergrift, W. A., Patel, S. J., & Das, A. (2015). Mechanisms and Clinical Significance of Histone Deacetylase Inhibitors: Epigenetic Glioblastoma Therapy. Anticancer Research, 35(2), 615–625. https://ar.iiarjournals.org/content/35/2/615.short

Patel, M., & Ahmed, S. (2011). Epigenetic regulators in glioblastoma multiforme: The drivers of GSC phenotype. Cancer Research, 71(22), 7210-7217. https://doi.org/10.1158/0008-5472.CAN-11-1332

Trang Huyen Nguyen, Zhang, Y., Shang, E., Shu, C., Torrini, C., Zhao, J., Bianchetti, E., Mela, A., Humala, N., Mahajan, A., Arif Harmanci, Lei, Z., Maienschein-Cline, M., Quinzii, C. M., Westhoff, M.-A., Georg Karpel-Massler, Bruce, J. N., Canoll, P., & Siegelin, M. D. (2020). HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. 130(7), 3699–3716. https://doi.org/10.1172/jci129049

Yelton, C. J., & Ray, S. K. (2018). Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. Neuroimmunology and Neuroinflammation, 5(11), 46. https://doi.org/10.20517/2347-8659.2018.58

Downloads

Posted

2024-08-04