Preprint / Version 1

Applications and Methodologies of Human-Assisted Evolution in Sustaining Coral Reefs

##article.authors##

  • Sijie Hu Sequoyah School

DOI:

https://doi.org/10.58445/rars.1385

Keywords:

Evolvability, Genetic, Coral Bleaching, Environmental Conditions

Abstract

Coral reefs play a crucial role in sustaining marine biodiversity by nurturing life that stabilizes the ecosystem. They have incalculable ecological and economic value, supporting 25% of marine life (NOAA 2019) as well as 450 million people from 109 countries that live in close proximity and depend on resources from coral reefs (Oppen et al., 2015). However, in the 21st century, corals have been exposed to various climate and anthropogenic threats which require immediate action to mitigate the effects. This paper will evaluate the many solutions posed to further enhance conservation efforts in response to these rapidly changing environmental conditions. Coral species and individuals can have varying tolerance levels in response to the impacts of climate change, including rising temperatures and ocean acidification. To combat this, geneticists and marine biologists pose a solution termed assisted evolution: the process of promoting evolution and adaptation via human assistance. Changes in environmental conditions are increasing in frequency and intensity, and only some populations may be able to adapt and evolve with the change. Uncertain of a species’ evolution potential, scientists have been performing ways of assisted evolution such as preconditioning, genetic engineering, and selective breeding. Assisted evolution attempts to change the genetics of some species to enable them to tolerate the changing environmental conditions. Though the topic of genetic editing holds controversies, its purpose is to sustain marine ecosystems and ultimately, to ensure global sustainability.

References

Bahr, K. D., Jokiel, P. L., & Rodgers, K. S. (2016). Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. Coral Reefs, 35(2), 729–738. https://doi.org/10.1007/s00338-016-1405-4

Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 80(4), 435–471. https://doi.org/10.1016/j.ecss.2008.09.003

Brown, B. E., & Ogden, J. C. (1993). Coral bleaching. Scientific American, 268(1), 64-70.

Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R., & Matz, M. V. (2018). CRISPR/Cas9-mediated genome editing in a reef-building coral. Proceedings of the National Academy of Sciences, 115(20), 5235–5240. https://doi.org/10.1073/pnas.1722151115

Cleves, P. A., Tinoco, A. I., Bradford, J., Perrin, D., Bay, L. K., & Pringle, J. R. (2020). Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. Proceedings of the National Academy of Sciences, 117(46), 28899–28905. https://doi.org/10.1073/pnas.1920779117

Crabbe, M. J. C. (2008). Climate change, global warming and coral reefs: Modelling the effects of temperature. Computational Biology and Chemistry, 32(5), 311–314. https://doi.org/10.1016/j.compbiolchem.2008.04.001

Crowley, T. J. (2000). Causes of Climate Change Over the Past 1000 Years. Science, 289(5477), 270–277. https://doi.org/10.1126/science.289.5477.270

Cunning, R. (2022). Will coral reefs survive by adaptive bleaching? Emerging Topics in Life Sciences, 6(1), 11–15. https://doi.org/10.1042/ETLS20210227

Done, T., Whetton, P., Jones, R., Berkelmans, R., Lough, J., Skirving, W., & Wooldridge, S. (2003). Global climate change and coral bleaching on the Great Barrier Reef. Final Report to the State of Queensland Greenhouse Taskforce through the Department of Natural Resources and Mines, 49.

Dove, S. G., & Hoegh-Guldberg, O. (2006). The cell physiology of coral bleaching. In J. T. Phinney, O. Hoegh‐Guldberg, J. Kleypas, W. Skirving, & A. Strong (Eds.), Coastal and Estuarine Studies (Vol. 61, pp. 55–71). American Geophysical Union. https://doi.org/10.1029/61CE05

Elder, H., Weis, V. M., Montalvo-Proano, J., Mocellin, V. J. L., Baird, A. H., Meyer, E., & Bay, L. K. (2022). Genetic Variation in Heat Tolerance of the Coral Platygyra Daedalea Indicates Potential for Adaptation to Ocean Warming. Frontiers in Marine Science, 9, 925845. https://doi.org/10.3389/fmars.2022.925845

Elliff, C. I., & Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face of climate change. Marine Environmental Research, 127, 148–154. https://doi.org/10.1016/j.marenvres.2017.03.007

Guinotte, J. (2005). Climate change and deep-sea corals. Current, 21(4), 48-49. https://marine-conservation.org/archive/mcbi/Current_Magazine/Climate_change.pdf

Guo, W., Bokade, R., Cohen, A. L., Mollica, N. R., Leung, M., & Brainard, R. E. (2020). Ocean Acidification Has Impacted Coral Growth on the Great Barrier Reef. Geophysical Research Letters, 47(19), e2019GL086761. https://doi.org/10.1029/2019GL086761

Helgoe, J., Davy, S. K., Weis, V. M., & Rodriguez‐Lanetty, M. (2024). Triggers, cascades, and endpoints: Connecting the dots of coral bleaching mechanisms. Biological Reviews, 99(3), 715–752. https://doi.org/10.1111/brv.13042

Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research. https://doi.org/10.1071/MF99078

Houlbrèque, F., & Ferrier‐Pagès, C. (2009). Heterotrophy in Tropical Scleractinian Corals. Biological Reviews, 84(1), 1–17. https://doi.org/10.1111/j.1469-185X.2008.00058.x

Humanes, A., Lachs, L., Beauchamp, E. A., Bythell, J. C., Edwards, A. J., Golbuu, Y., Martinez, H. M., Palmowski, P., Treumann, A., Van Der Steeg, E., Van Hooidonk, R., & Guest, J. R. (2022). Within-population variability in coral heat tolerance indicates climate adaptation potential. Proceedings of the Royal Society B: Biological Sciences, 289(1981), 20220872. https://doi.org/10.1098/rspb.2022.0872

Ipcc. (2022). Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157940

Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46(1), 505–529. https://doi.org/10.1146/annurev-biophys-062215-010822

Jury, C. P., Delano, M. N., & Toonen, R. J. (2019). High heritability of coral calcification rates and evolutionary potential under ocean acidification. Scientific Reports, 9(1), 20419. https://doi.org/10.1038/s41598-019-56313-1

Leggat, W., Heron, S. F., Fordyce, A., Suggett, D. J., & Ainsworth, T. D. (2022). Experiment Degree Heating Week (eDHW) as a novel metric to reconcile and validate past and future global coral bleaching studies. Journal of Environmental Management, 301, 113919. https://doi.org/10.1016/j.jenvman.2021.113919

Lesser, M. P. (2011). Coral bleaching: causes and mechanisms. Coral reefs: an ecosystem in transition, 405-419.

Lin, J., Duchêne, D., Carøe, C., Smith, O., Ciucani, M. M., Niemann, J., Richmond, D., Greenwood, A. D., MacPhee, R., Zhang, G., Gopalakrishnan, S., & Gilbert, M. T. P. (2022). Probing the genomic limits of de-extinction in the Christmas Island rat. Current Biology, 32(7), 1650-1656.e3. https://doi.org/10.1016/j.cub.2022.02.027

Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L., & Donner, S. D. (2021). Quantifying global potential for coral evolutionary response to climate change. Nature Climate Change, 11(6), 537-542.

Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & Van Woesik, R. (2001). Coral bleaching: The winners and the losers. Ecology Letters, 4(2), 122–131. https://doi.org/10.1046/j.1461-0248.2001.00203.x

Madeleine J. H., V. O., Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences, 112(8), 2307–2313. https://doi.org/10.1073/pnas.1422301112

Maire, J., & Van Oppen, M. J. H. (2022). A role for bacterial experimental evolution in coral bleaching mitigation? Trends in Microbiology, 30(3), 217–228. https://doi.org/10.1016/j.tim.2021.07.006

Martinez, S., Grover, R., & Ferrier-Pagès, C. (2022). Symbiont starvation affects the stability of the coral–Symbiodiniaceae symbiosis. Frontiers in Marine Science, 9, 979563. https://doi.org/10.3389/fmars.2022.979563

McClelland, G. B., & Lyons, S. A. (2024). Cellular respiration. In Encyclopedia of Fish Physiology (pp. 789–797). Elsevier. https://doi.org/10.1016/B978-0-323-90801-6.00021-5

McGrath, C. (2024). Highlight: Lost Traits and the Persistence of Complexity. Genome Biology and Evolution, 16(5), evae101. https://doi.org/10.1093/gbe/evae101

Mollica, N. R., Guo, W., Cohen, A. L., Huang, K.-F., Foster, G. L., Donald, H. K., & Solow, A. R. (2018). Ocean acidification affects coral growth by reducing skeletal density. Proceedings of the National Academy of Sciences, 115(8), 1754–1759. https://doi.org/10.1073/pnas.1712806115

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., & Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century. Nature Communications, 9(1), 1324. https://doi.org/10.1038/s41467-018-03732-9

Palacio-Castro, A. M., Smith, T. B., Brandtneris, V., Snyder, G. A., Van Hooidonk, R., Maté, J. L., Manzello, D., Glynn, P. W., Fong, P., & Baker, A. C. (2023). Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming. Proceedings of the National Academy of Sciences, 120(8), e2202388120. https://doi.org/10.1073/pnas.2202388120

Pavlova, A., Petrovic, S., Harrisson, K. A., Cartwright, K., Dobson, E., Hurley, L. L., Lane, M., Magrath, M. J. L., Miller, K. A., Quin, B., Winterhoff, M., Yen, J. D. L., & Sunnucks, P. (2023). Benefits of genetic rescue of a critically endangered subspecies from another subspecies outweigh risks: Results of captive breeding trials. Biological Conservation, 284, 110203. https://doi.org/10.1016/j.biocon.2023.110203

Peixoto, R. S., Rosado, P. M., Leite, D. C. D. A., Rosado, A. S., & Bourne, D. G. (2017). Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00341

Peleg-Grossman, S., Melamed-Book, N., & Levine, A. (2012). ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Plant Signaling & Behavior, 7(3), 409–415. https://doi.org/10.4161/psb.19217

Porter, J. W., & Tougas, J. I. (2001). Reef Ecosystems: Threats to their Biodiversity. In Encyclopedia of Biodiversity (pp. 73–95). Elsevier. https://doi.org/10.1016/B0-12-226865-2/00229-7

Qin, A., Ding, Y., Jian, Z., Ma, F., Worth, J. R. P., Pei, S., Xu, G., Guo, Q., & Shi, Z. (2021). Low genetic diversity and population differentiation in Thuja sutchuenensis Franch., an extremely endangered rediscovered conifer species in southwestern China. Global Ecology and Conservation, 25, e01430. https://doi.org/10.1016/j.gecco.2020.e01430

Rapuano, H., Shlesinger, T., Roth, L., Bronstein, O., & Loya, Y. (2023). Coming of age: Annual onset of coral reproduction is determined by age rather than size. iScience, 26(5), 106533. https://doi.org/10.1016/j.isci.2023.106533

Reshef, L., Koren, O., Loya, Y., Zilber‐Rosenberg, I., & Rosenberg, E. (2006). The Coral Probiotic Hypothesis. Environmental Microbiology, 8(12), 2068–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x

Rodríguez-Rojas, A., Kim, J. J., Johnston, P. R., Makarova, O., Eravci, M., Weise, C., Hengge, R., & Rolff, J. (2020). Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLOS Genetics, 16(3), e1008649. https://doi.org/10.1371/journal.pgen.1008649

Roth, M. S. (2014). The engine of the reef: Photobiology of the coral–algal symbiosis. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00422

Sies, H., Belousov, V. V., Chandel, N. S., Davies, M. J., Jones, D. P., Mann, G. E., Murphy, M. P., Yamamoto, M., & Winterbourn, C. (2022). Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7), 499–515. https://doi.org/10.1038/s41580-022-00456-z

Spielman, D., Brook, B. W., & Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences, 101(42), 15261–15264. https://doi.org/10.1073/pnas.0403809101

Stern, D. I., & Kaufmann, R. K. (2014). Anthropogenic and natural causes of climate change. Climatic Change, 122(1–2), 257–269. https://doi.org/10.1007/s10584-013-1007-x

Strand, E. L., Wong, K. H., Farraj, A., Gray, S., McMenamin, A., & Putnam, H. M. (2023). Coral species-specific loss and physiological legacy effects are elicited by extended marine heatwave. https://doi.org/10.1101/2023.09.18.558296

U.S. EPA. (2024). Climate Change Indicators. EPA.gov. https://www.epa.gov/climate-indicators/climate-change-indicators-sea-surface-temperature

Van Woesik, R., Shlesinger, T., Grottoli, A. G., Toonen, R. J., Vega Thurber, R., Warner, M. E., Marie Hulver, A., Chapron, L., McLachlan, R. H., Albright, R., Crandall, E., DeCarlo, T. M., Donovan, M. K., Eirin‐Lopez, J., Harrison, H. B., Heron, S. F., Huang, D., Humanes, A., Krueger, T., … Zaneveld, J. (2022). Coral‐bleaching responses to climate change across biological scales. Global Change Biology, 28(14), 4229–4250. https://doi.org/10.1111/gcb.16192

Weis, V. M. (2008). Cellular mechanisms of Cnidarian bleaching: Stress causes the collapse of symbiosis. Journal of Experimental Biology, 211(19), 3059–3066. https://doi.org/10.1242/jeb.009597

Downloads

Posted

2024-08-10