Preprint / Version 1

Integration Of Imaging Data And Genomic Information For Enhancing Personalized Treatment In Glioblastoma Multiforme

A Literature Review

##article.authors##

  • Askia Khryss Roxas Student

DOI:

https://doi.org/10.58445/rars.1326

Keywords:

Imaging Data, Genomic Informatio, glioblastoma

Abstract

Glioblastoma Multiforme (GBM) is a highly aggressive and deadly brain tumor with a poor prognosis, featuring a 5-year survival rate of only 7.2%. Current treatment methods, including surgery, chemotherapy, and radiation, offer limited long-term success, particularly due to the tumor's heterogeneity and the presence of glioma-initiating cells that resist treatment. This review explores the potential of integrating imaging techniques, such as MRI and PET, with genomic information to enhance personalized treatment strategies for GBM. MRI, including advanced methods like PWI and MRS, provides detailed anatomical and metabolic insights, while PET imaging assesses tumor activity and hypoxia. Genomic profiling, through technologies like Next-Generation Sequencing (NGS) and gene expression profiling, identifies key genetic alterations in GBM. Combining these imaging and genomic data sets through approaches like radiomics and radiogenomics could improve diagnosis, treatment planning, and prognostication, ultimately leading to more effective and tailored therapies. However, further research and clinical trials are essential to validate and optimize these integrative strategies for clinical application.

References

Chaddad, A., Kucharczyk, M. J., Daniel, P., Sabri, S., Jean-Claude, B., Niazi, T., & Abdulkarim, B. A. (2019). Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation. National Library of Medicine. https://doi.org/10.3389/fonc.2019.00374

Collection of Dna Helix Clipart (24). (n.d.). Clipart Library. https://clipart-library.com/clipart/di45ado5T.htm

Corr, F., Grimm, D., Sass, B., Pojskić, M., Bartsch, J. W., Carl, B., Nimsky, C., & Bopp, M. (2022). Radiogenomic Predictors of Recurrence in Glioblastoma—A Systematic Review. Journal of Personalized Medicine, 12(3), 402. https://doi.org/10.3390/jpm12030402

Di Muzio, B., & Gaillard, F. (2016, February 14). Normal brain MRI. Radiopaedia.org. https://doi.org/10.53347/rid-42777

Drake, L., Hillmer, A., & Cai, Z. (2020). Approaches to PET Imaging of Glioblastoma. National Library of Medicine. https://doi.org/10.3390/molecules25030568

Functional Magnetic Resonance Imaging (fMRI). (2019, September 28). National Brain Mapping Lab. https://nbml.ir/en/pages/587268

G, J. (2020, October 5). NGS overview: from sample to sequencer to results. iRepertoire. https://irepertoire.com/ngs-overview-from-sample-to-sequencer-to-results/

Grech, N., Dalli, T., Mizzi, S., Meilak, L., Calleja, N., & Zrinzo, A. (2020). Rising incidence of glioblastoma multiforme in a Well-Defined population. Cureus. https://doi.org/10.7759/cureus.8195

Hanif, F., Muzaffar, K., Perveen, K., Malhi, S. M., & Simjee, S. U. (2017). Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. PubMed, 18(1), 3–9. https://doi.org/10.22034/apjcp.2017.18.1.3

Introduction to Gene Expression Profiling | Thermo Fisher Scientific - IE. (n.d.). https://www.thermofisher.com/ph/en/home/life-science/pcr/real-time-pcr/real-time-pcr-learning-center/gene-expression-analysis-real-time-pcr-information/introduction-gene-expression-profiling.html#:~:text=Gene%20expression%20profiling%20measures%20mRNA,in%20specific%20genes%20being%20expressed

Kolostova, K. (2021). Next generation sequencing of glioblastoma circulating tumor cells: non-invasive solution for disease monitoring. PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205800/

Lee, Y., Seo, H. W., Baek, J., Lim, S. H., Hwang, S., & Kim, E. H. (2020). Gene expression profiling of glioblastoma cell lines depending on TP53 status after tumor-treating fields (TTFields) treatment. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68473-6

Lombardi, M. Y., & Assem, M. (2017). Glioblastoma genomics: a very complicated story. In Codon Publications eBooks (pp. 3–25). https://doi.org/10.15586/codon.glioblastoma.2017.ch1

Mannam, S. S., Nwagwu, C. D., Sumner, C., Weinberg, B. D., & Hoang, K. B. (2023, May 23). Perfusion-Weighted Imaging: The Use of a Novel Perfusion Scoring Criteria to Improve the Assessment of Brain Tumor Recurrence versus Treatment Effects. Tomography. https://doi.org/10.3390/tomography9030087

Mumbai, P. S. (2019, October 24). Things You Should Know about PET Scan for the Brain | PET Scan Mumbai. PetScan. https://www.petscaninmumbai.com/blog/pet-scan-for-brain/

Neuroscience News. (2016, November 28). Head impacts lead to brain changes in high school football players. https://neurosciencenews.com/concussion-neurology-school-football-5614/

Overcast, W. B., Davis, K., Ho, C. Y., Hutchins, G. D., Green, M., Graner, B., & Veronesi, M. C. (2021). Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Current Oncology Reports, 23(3). https://doi.org/10.1007/s11912-021-01020-2

Park, J. H., & Lee, K. (2022). Current understanding of hypoxia in glioblastoma multiforme and its response to immunotherapy. Cancers, 14(5), 1176. https://doi.org/10.3390/cancers14051176

Radiological Society of North America (RSNA) and American College of Radiology (ACR). (n.d.). Functional MRI (FMRI). Radiologyinfo.org. https://www.radiologyinfo.org/en/info/fmribrain#a635cbd560884ba0b812652ded7bfe2b

Shui, L., Ren, H., Yang, X., Li, J., Chen, Z., Yi, C., Zhu, H., & Shui, P. (2021). The Era of Radiogenomics in Precision Medicine: An emerging approach to support diagnosis, treatment decisions, and prognostication in oncology. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.570465

Shukla, G., Alexander, G. S., Bakas, S., Nikam, R., Talekar, K., Palmer, J. D., & Shi, W. (2017). Advanced magnetic resonance imaging in glioblastoma: a review. National Library of Medicine, 6(4), 40. https://doi.org/10.21037/cco.2017.06.28

Singh, G., Manjila, S., Sakla, N., True, A., Wardeh, A. H., Beig, N., Vaysberg, A., Matthews, J. W., Prasanna, P., & Spektor, V. (2021, May 6). Radiomics and radiogenomics in gliomas: a contemporary update. British Journal of Cancer. https://doi.org/10.1038/s41416-021-01387-w

Stieber, D., Golebiewska, A., Evers, L., Lenkiewicz, E., Brons, N. H. C., Nicot, N., Oudin, A., Bougnaud, S., Hutter, F., Bjerkvig, R., Vallar, L., Barrett, M. T., & Niclou, S. P. (2013). Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathologica, 127(2), 203–219. https://doi.org/10.1007/s00401-013-1196-4

Vastrad, B., Vastrad, C., & Kotturshetti, I. (2020). Identification of Key Genes and Signaling Pathways Associated with the Progression of Glioblastoma multiform. medRxiv. https://doi.org/10.1101/2020.12.21.20248616

What is Next-Generation Sequencing? | Thermo Fisher Scientific - IE. (n.d.). https://www.thermofisher.com/ph/en/home/life-science/sequencing/sequencing-learning-center/next-generation-sequencing-information/ngs-basics/what-is-next-generation-sequencing.html

Wu, W., Klockow, J., Zhang, M., Lafortune, F., Chang, E., Jin, L., Wu, Y., & Daldrup-Link, H. E. (2021). Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacological Research, 171, 105780. https://doi.org/10.1016/j.phrs.2021.105780

Downloads

Posted

2024-07-20