Preprint / Version 1

Activation and Immunomodulatory Roles of TLR7 and TLR8 in Enhancing Vaccine Efficacy and Immune Responses

A Systematic Review

##article.authors##

  • Askia Khryss Roxas Student

DOI:

https://doi.org/10.58445/rars.1322

Keywords:

TLR7, TLR8, Vaccine

Abstract

Toll-like receptors (TLRs) 7 and 8 recognize single-stranded RNA (ssRNA) from viruses, initiating immune responses. This systematic review evaluates their roles in enhancing immune responses, vaccine efficacy, autoimmune diseases, and cancer immunotherapy. A comprehensive search identified studies from the past ten years. This paper will focus on TLR7 and TLR8 activation mechanisms, their effects on immune cell functions, and their therapeutic potential across various medical applications. TLR7 activation enhances interferon-alpha production, B-cell activation, and antibody responses, which are essential for antiviral defense and vaccine efficacy. TLR8 activation induces pro-inflammatory cytokines and enhances CD8+ T-cell responses, aiding vaccine efficacy and offering therapeutic potential for HIV-1 latency reversal and chronic hepatitis B. In cancer immunotherapy, TLR7/8 agonists remodel tumor and host responses, reduce tumor mass, and enhance T-cell activity. Despite promising results, limitations include study heterogeneity, reliance on animal models, and the need for standardized methodologies. Future research should focus on translating preclinical findings into clinical applications, balancing immune activation with the risk of autoimmunity, and exploring synergistic combinations with other immunotherapies. TLR7 and TLR8 are promising targets for enhancing immune responses and developing therapies for infectious diseases, autoimmune disorders, and cancer.

References

Abbas, F., Cenac, C., Youness, A., Azar, P., Delobel, P., & Guéry, J. C. (2022). HIV-1 infection

enhances innate function and TLR7 expression in female plasmacytoid dendritic cells. Life Science Alliance, 5(10), e202201452. https://doi.org/10.26508/lsa.202201452

Abt, E. R., Rashid, K., Le, T. M., Li, S., Lee, H. R., Lok, V., Li, L., Creech, A. L., Labora, A. N.,

Mandl, H. K., Lam, A. K., Cho, A., Rezek, V., Wu, N., Abril-Rodriguez, G., Rosser, E. W., Mittelman, S. D., Hugo, W., Mehrling, T., Bantia, S., Ribas, A., Donahue, T. R., Crooks, G. M., Wu, T. T., & Radu, C. G. (2022). Purine nucleoside phosphorylase enables dual metabolic checkpoints that prevent T-cell immunodeficiency and TLR7-associated autoimmunity. The Journal of Clinical Investigation, 132(16), e160852. https://doi.org/10.1172/JCI160852

Adhikari, A., Gupta, B. P., Manandhar, K. D., Mishra, S. K., Saiju, H. K., Shrestha, R. M.,

Mishra, N., & Sharma, S. (2015). Negative feedback circuit for toll like receptor-8 activation in human embryonic Kidney 293 using outer membrane vesicle delivered bi-specific siRNA. BMC Immunology, 16(1), 42. https://doi.org/10.1186/s12865-015-0109-9

Akache, B., Weeratna, R. D., Deora, A., Thorn, J. M., Champion, B., Merson, J. R., Davis, H. L.,

& McCluskie, M. J. (2016). Anti-IgE Qb-VLP conjugate vaccine self-adjuvants through activation of TLR7. Vaccines, 4(3), 1-8. https://doi.org/10.3390/vaccines4010003

Angelidou, A., Conti, M.-G., Diray-Arce, J., Benn, C. S., Netea, M. G., Liu, M., Potluri, L. P.,

Sanchez-Schmitz, G., Husson, R., Ozonoff, A., Kampmann, B., van Haren, S. D., & Levy, O. (2020). Licensed Bacille Calmette-Guérin (BCG) formulations differ markedly in bacterial viability, RNA content and innate immune activation. Vaccine, 38(9), 2229–2240. https://doi.org/10.1016/j.vaccine.2019.11.060

Auderset, F., Belnoue, E., Mastelic-Gavillet, B., Lambert, P.-H., & Siegrist, C.-A. (2020). A

TLR7/8 agonist-including DOEPC-based cationic liposome formulation mediates its adjuvanticity through the sustained recruitment of highly activated monocytes in a type I IFN-independent but NF-kB-dependent manner. Frontiers in Immunology, 11, 580974. https://doi.org/10.3389/fimmu.2020.580974

Ayithan, N., Tang, L., Tan, S. K., Chen, D., Wallin, J. J., Fletcher, S. P., Kottilil, S., & Poonia, B.

(2021). Follicular Helper T (TFH) Cell Targeting by TLR8 Signaling for Improving HBsAg-Specific B Cell Response in Chronic Hepatitis B Patients. Frontiers in Immunology, 12, 735913. https://doi.org/10.3389/fimmu.2021.735913

Behzadi, P., García-Perdomo, H. A., & Karpiński, T. M. (2021). Toll-like receptors: General

molecular and structural biology. Journal of Immunology Research, 2021, Article 9914854. https://doi.org/10.1155/2021/9914854

Celhar, T., Lu, H. K., Benso, L., Rakhilina, L., Lee, H. Y., Tripathi, S., Zharkova, O., Ong, W. Y.,

Yasuga, H., Au, B., Marlier, D., Lim, L. H. K., Thamboo, T. P., Mudgett, J. S., Mackey, M. F., Zaller, D. M., Connolly, J. E., & Fairhurst, A.-M. (2019). TLR7 protein expression in mild and severe lupus-prone models is regulated in a leukocyte, genetic, and IRAK4 dependent manner. Frontiers in Immunology, 10, 1546. https://doi.org/10.3389/fimmu.2019.01546

Cervantes-Barragan, L., Zust, R., Weber, F., Spiegel, M., Lang, K. S., Akira, S., ... &

Ludewig, B. (2007). Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood, 109(3), 1131-1137. https://doi.org/10.1182/blood-2006-05-023770

Chi, H., Li, C., Zhao, F. S., Zhang, L., Ng, T. B., Jin, G., & Sha, O. (2017). Anti-tumor activity

of Toll-like receptor 7 agonists. Frontiers in Pharmacology, 8, 304. doi:10.3389/fphar.2017.00304

Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., & Reis e Sousa, C. (2004). Innate antiviral

responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303(5663), 1529-1531. https://doi.org/10.1126/science.1093616

Ganapathi, L., Van Haren, S., Dowling, D. J., Bergelson, I., Shukla, N. M., Malladi, S. S.,

Balakrishna, R., Tanji, H., Ohto, U., Shimizu, T., David, S. A., & Levy, O. (2015). The imidazoquinoline Toll-like receptor-7/8 agonist Hybrid-2 potently induces cytokine production by human newborn and adult leukocytes. PLoS ONE, 10(8), e0134640. https://doi.org/10.1371/journal.pone.0134640

Gentile, F., Deriu, M. A., Barakat, K. H., Danani, A., & Tuszynski, J. A. (2018). A novel

interaction between the TLR7 and a colchicine derivative revealed through a computational and experimental study. Pharmaceuticals, 11(1), 22. https://doi.org/10.3390/ph11010022

Giltiay, N. V., Shu, G. L., Shock, A., & Clark, E. A. (2017). Targeting CD22 with the

monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling. Arthritis Research & Therapy, 19(91). https://doi.org/10.1186/s13075-017-1284-2

Giordano, D., Kuley, R., Draves, K. E., Elkon, K. B., Giltiay, N. V., & Clark, E. A. (2023). B

cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Frontiers in Immunology, 14, 1050528. https://doi.org/10.3389/fimmu.2023.1050528

Guzelj, S., Weiss, M., Slütter, B., Frkanec, R., & Jakopin, Ž. (2022). Covalently conjugated

NOD2/TLR7 agonists are potent and versatile immune potentiators. Journal of Medicinal Chemistry, 65(22), 15085-15101. https://doi.org/10.1021/acs.jmedchem.2c00808

Herrera-Rodriguez, J., Signorazzi, A., Holtrop, M., de Vries-Idema, J., & Huckriede, A. (2019).

Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production. Vaccine, 37(13), 1630–1637. https://doi.org/10.1016/j.vaccine.2019.01.086

Huang, Y., Liu, D., Chen, M., Xu, S., Peng, Q., Zhu, Y., Long, J., Liu, T., Deng, Z., Xie, H., Li,

J., Liu, F., & Xiao, W. (2023). TLR7 promotes skin inflammation via activating NFκB-mTORC1 axis in rosacea. PeerJ, 11, e15976. https://doi.org/10.7717/peerj.15976

Kwak, H. W., Park, H.-J., Ko, H. L., Park, H., Cha, M. H., Lee, S.-M., Kang, K. W., Kim, R.-H.,

Ryu, S. R., Kim, H.-J., Kim, J.-O., Song, M., Kim, H., Jeong, D. G., Shin, E.-C., & Nam, J.-H. (2019). Cricket paralysis virus internal ribosome entry site-derived RNA promotes conventional vaccine efficacy by enhancing a balanced Th1/Th2 response. Vaccine, 37(37), 5191-5202. https://doi.org/10.1016/j.vaccine.2019.07.070

Kwak, H. W., Hong, S. H., Park, H. J., Park, H. J., Bang, Y. J., Kim, J. Y., Lee, Y. S., Bae, S. H.,

Yoon, H., & Nam, J. H. (2022). Adjuvant effect of IRES-based single-stranded RNA on melanoma immunotherapy. BMC Cancer, 22(1041). https://doi.org/10.1186/s12885-022-10140-2

Laliberté-Gagné, M.-E., Bolduc, M., Garneau, C., Olivera-Ugarte, S.-M., Savard, P., & Leclerc,

D. (2021). Modulation of antigen display on PapMV nanoparticles influences its immunogenicity. Vaccines, 9(1), 33. https://doi.org/10.3390/vaccines9010033

Lin, Y.-L., Lu, M.-Y., Chuang, C.-F., Kuo, Y., Lin, H.-E., Li, F.-A., Wang, J.-R., Hsueh, Y.-P., &

Liao, F. (2021). TLR7 is critical for anti-viral humoral immunity to EV71 infection in the spinal cord. Frontiers in Immunology, 11, 614743. https://doi.org/10.3389/fimmu.2020.614743

Ma, L., Han, M., Keyoumu, Z., Wang, H., & Keyoumu, S. (2017). Immunotherapy of

dual-function vector with both immunostimulatory and B-cell lymphoma 2 (Bcl-2)-silencing effects on gastric carcinoma. Medical Science Monitor, 23, 1980-1991. https://doi.org/10.12659/MSM.900418

Maeda, K., & Akira, S. (2016). TLR7 Structure: Cut in Z-Loop. Immunity, 45(October),

-748. https://doi.org/10.1016/j.immuni.2016.10.003

Meås, H. Z., Haug, M., Beckwith, M. S., Louet, C., Ryan, L., Hu, Z., Landskron, J., Nordbø, S.

A., Taskén, K., Yin, H., Damås, J. K., & Flo, T. H. (2020). Sensing of HIV-1 by TLR8 activates human T cells and reverses latency. Nature Communications, 11(1), 147. https://doi.org/10.1038/s41467-019-13837-4

Michaelis, K. A., Norgard, M. A., Zhu, X., Levasseur, P. R., Sivagnanam, S., Liudahl, S. M.,

Burfeind, K. G., Olson, B., Pelz, K. R., Angeles Ramos, D. M., Maurer, H. C., Olive, K. P., Coussens, L. M., Morgan, T. K., & Marks, D. L. (2019). The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nature Communications, 10(1), 4682. https://doi.org/10.1038/s41467-019-12657-w

Miller, S. M., Cybulski, V., Whitacre, M., Bess, L. S., Livesay, M. T., Walsh, L., Burkhart, D.,

Bazin, H. G., & Evans, J. T. (2020). Novel lipidated imidazoquinoline TLR7/8 adjuvants elicit influenza-specific Th1 immune responses and protect against heterologous H3N2 influenza challenge in mice. Frontiers in Immunology, 11, 406. https://doi.org/10.3389/fimmu.2020.00406

Murakami, Y., Fukui, R., Tanaka, R., Motoi, Y., Kanno, A., Sato, R., Yamaguchi, K., Amano, H.,

Furukawa, Y., Suzuki, H., Suzuki, Y., Tamura, N., Yamashita, N., & Miyake, K. (2021). Anti-TLR7 antibody protects against lupus nephritis in NZBWF1 mice by targeting B cells and patrolling monocytes. Frontiers in Immunology, 12, 777197. https://doi.org/10.3389/fimmu.2021.777197

Obermann, H.-L., Lederbogen, I. I., Steele, J., Dorna, J., Sander, L. E., Engelhardt, K.,

Bakowsky, U., Kaufmann, A., & Bauer, S. (2022). RNA-cholesterol nanoparticles function as potent immune activators via TLR7 and TLR8. Frontiers in Immunology, 12, 658895. https://doi.org/10.3389/fimmu.2021.658895

Park, H.-J., Ko, H. L., Won, D.-H., Hwang, D.-B., Shin, Y.-S., Kwak, H.-W., Kim, H.-J., Yun,

J.-W., & Nam, J.-H. (2019). Comprehensive analysis of the safety profile of a single-stranded RNA nano-structure adjuvant. Pharmaceutics, 11(9), 464. https://doi.org/10.3390/pharmaceutics11090464

Patinote, C., Bou Karroum, N., Moarbess, G., Cirnat, N., Kassab, I., Bonnet, P.-A., &

Deleuze-Masquefa, C. (2020). Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. European Journal of Medicinal Chemistry, 193, 112238. https://doi.org/10.1016/j.ejmech.2020.112238

Pawar, K., Kawamura, T., & Kirino, Y. (2024). The tRNAVal half: A strong endogenous Toll-like

receptor 7 ligand with a 5′-terminal universal sequence signature. Proceedings of the National Academy of Sciences, 121(19), e2319569121. https://doi.org/10.1073/pnas.2319569121

Rouanet, M., Hanoun, N., Lulka, H., Ferreira, C., Garcin, P., Sramek, M., Jacquemin, G., Coste,

A., Pagan, D., Valle, C., Sarot, E., Pancaldi, V., Lopez, F., Buscail, L., & Cordelier, P. (2022). The antitumoral activity of TLR7 ligands is corrupted by the microenvironment of pancreatic tumors. Molecular Therapy, 30(4), 1553-1563. https://doi.org/10.1016/j.ymthe.2022.01.018

Shah, D., Comba, A., Faisal, S. M., Kadiyala, P., Baker, G. J., Alghamri, M. S., Doherty, R.,

Zamler, D., Nuñez, G., Castro, M. G., & Lowenstein, P. R. (2021). A novel miR1983-TLR7-IFNβ circuit licenses NK cells to kill glioma cells, and is under the control of galectin-1. Oncoimmunology, 10(1), e1939601. https://doi.org/10.1080/2162402X.2021.1939601

Shibata, T., Ohto, U., Nomura, S., & Shimizu, T. (2015). Structural studies reveal the dual

recognition of guanosine and its derivatives by TLR7. Journal of Biological Chemistry, 290(38), 23155-23166. https://doi.org/10.1074/jbc.M115.666537

Smith, A. A. A., Gale, E. C., Roth, G. A., Maikawa, C. L., Correa, S., Yu, A. C., & Appel, E. A.

(2020). Nanoparticles presenting potent TLR7/8 agonists enhance anti-PD-L1 immunotherapy in cancer treatment. Biomacromolecules, 21(9), 3704–3712. https://doi.org/10.1021/acs.biomac.0c00812

Sun, H., Li, Y., Zhang, P., Xing, H., Zhao, S., Song, Y., & Yu, J. (2022). Targeting toll-like

receptor 7/8 for immunotherapy: Recent advances and perspectives. Biomarker Research, 10(89). https://doi.org/10.1186/s40364-022-00436-7

Tapia-Calle, G., Born, P. A., Koutsoumpli, G., Gonzalez-Rodriguez, M. I., Hinrichs, W. L. J., &

Huckriede, A. L. W. (2019). A PBMC-based system to assess human T cell responses to influenza vaccine candidates in vitro. Vaccines, 7(4), 181. https://doi.org/10.3390/vaccines7040181

Tarrahimofrad, H., Rahimnahal, S., Zamani, J., Jahangirian, E., & Aminzadeh, S. (2021).

Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Scientific Reports, 11, 24485. https://doi.org/10.1038/s41598-021-03932-2

Tong, A.-J., Leylek, R., Herzner, A.-M., Rigas, D., Wichner, S., Blanchette, C., Tahtinen, S.,

Kemball, C. C., Mellman, I., Haley, B., Freund, E. C., & Delamarre, L. (2024). Nucleotide modifications enable rational design of TLR7-selective ligands by blocking RNase cleavage. Journal of Experimental Medicine, 221(2), e20230341. https://doi.org/10.1084/jem.20230341

Wu, J., Li, S., Li, T., Lv, X., Zhang, M., Zang, G., Qi, C., Liu, Y.-J., Xu, L., & Chen, J. (2019).

pDC Activation by TLR7/8 Ligand CL097 Compared to TLR7 Ligand IMQ or TLR9 Ligand CpG. Journal of Immunology Research, 2019, Article ID 1749803. https://doi.org/10.1155/2019/1749803

Yang, Y., Csakai, A., Jiang, S., Smith, C., Tanji, H., Huang, J., Jones, T., Sakaniwa, K.,

Broadwell, L., Shi, C., Soti, S., Ohto, U., Fang, Y., Shen, S., Deng, F., Shimizu, T., & Yin, H. (2021). Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists. Nature Communications, pp. 12, 4351. https://doi.org/10.1038/s41467-021-24536-4

Zhang, M., Yan, Z., Wang, J., & Yao, X. (2017). Toll-like receptors 7 and 8 expression correlates

with the expression of immune biomarkers and positively predicts the clinical outcome of patients with melanoma. OncoTargets and Therapy, 10, 4339-4346. http://dx.doi.org/10.2147/OTT.S136194

Zhou, L., Zhu, Y., Mo, L., Wang, M., Lin, J., Zhao, Y., Feng, Y., Xie, A., Wei, H., Qiu, H.,

Huang, J., & Yang, Q. (2022). TLR7 controls myeloid-derived suppressor cell expansion and function in the lung of C57BL/6 mice infected with Schistosoma japonicum. PLOS Neglected Tropical Diseases, 16(10), e0010851. https://doi.org/10.1371/journal.pntd.0010851

Downloads

Posted

2024-07-20