Preprint / Version 1

mRNAissance: To What Extent Could mRNA Technology Lead the Revolution in Vaccine Development?

##article.authors##

  • Shumala Jayakrishna British International School Kuala Lumpur

DOI:

https://doi.org/10.58445/rars.1267

Keywords:

mRNA, Vaccine

Abstract

This paper explores the revolutionary significance of mRNA vaccine technology.

Beginning with the historical context of vaccine development, this paper considers the emergence of this innovative technology, exploring examples of mRNA vaccines in light of the COVID-19 pandemic. The mechanism and advantages of mRNA vaccines including their adaptability, speed of production and high immunogenicity are discussed. The Pfizer-BioNTech and Moderna vaccines also serve to highlight the importance of this technology in the pandemic, but also its limitations in the real-world setting such as reduced efficacy against new variants, storage challenges and concerns on immune exhaustion.

Next, the potential for mRNA technologies in challenging infectious diseases such as HIV (human immunodeficiency virus) and MDR-TB (multidrug-resistant tuberculosis) is also evaluated. mRNA technology can also have wider impacts in the field of healthcare, with implications in cancer therapy by targeting tumor associated antigens (TAAs), particularly in melanoma, and treatment for genetic diseases such as hemophilia and cystic fibrosis by encoding the relevant missing proteins. mRNA therapy can also induce pluripotency in somatic cells which could have profound impacts in regenerative medicine.

Finally, other developing vaccine technologies such as DNA vaccines, DIOSynVax and Caltech’s EABR are explored within the context of mRNA vaccines, highlighting opportunities for combinations, and overcoming the limitations of mRNA technology. Ultimately, this research contributes to the understanding of mRNA vaccines and its profound implications in revolutionizing many aspects of global healthcare.

References

Greenwood B, Salisbury D, Hill AV. Vaccines and global health. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2011 Oct 12 [cited 2024 Feb 24];366(1579):2733–42. doi:10.1098/rstb.2011.0076

College of Physicians Philadelphia. Vaccine timeline [Internet]. College of Physicians Philadelphia; [cited 2024 Feb 24]. Available from: https://historyofvaccines.org/history/vaccine-timeline/overview

Centers for Disease Control and Prevention. Fast facts on global immunization [Internet]. Centers for Disease Control and Prevention; 2023 [cited 2024 Feb 24]. Available from: https://www.cdc.gov/globalhealth/immunization/data/fast-facts.html

College of Physicians Philadelphia. Diseases [Internet]. College of Physicians Philadelphia; [cited 2024 Feb 24]. Available from: https://historyofvaccines.org/diseases

Anthony L. Komaroff M. Why are mrna vaccines so exciting? [Internet]. Harvard Medical School; 2021 [cited 2024 Feb 24]. Available from: https://www.health.harvard.edu/blog/why-are-mrna-vaccines-so-exciting-2020121021599

Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, et al. A comprehensive review of mrna vaccines. International Journal of Molecular Sciences [Internet]. 2023 Jan 31[cited 2024 Feb 24];24(3):2700. doi:10.3390/ijms24032700

Sharma R, Mandepalli J. History and future of vaccination. Personal interview, Dec 27. Malaysia, 2023 (unpublished) [see Appendix: Interview Transcript]

Cobb M. Who discovered messenger RNA? Current Biology [Internet]. 2015 Jun [cited 2024 Feb 24]; 25(13). doi:10.1016/j.cub.2015.05.03

Li M, Li Y, Li S, Jia L, Wang H, Li M, et al. The Nano Delivery Systems and applications of mrna. European Journal of Medicinal Chemistry [Internet]. 2022 Jan [cited 2024 Feb 24]; 227:113910. doi:10.1016/j.ejmech.2021.113910

Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research [Internet]. 1984 [cited 2024 Feb 24];12(18):7035–56. doi:10.1093/nar/12.18.7035

Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today [Internet]. 2019 Oct [cited 2024 Feb 24];28:100766. doi:10.1016/j.nantod.2019.100766

Dolgin E. The tangled history of mrna vaccines. Nature [Internet]. 2021 Sept 14 [cited 2024 Feb 24] ;597(7876):318–24. doi:10.1038/d41586-021-02483-w

Damian Garde JS— BG. The story of mrna: How a once-dismissed idea became a leading technology in the Covid vaccine race [Internet]. 2023 [cited 2024 Feb 24]. Available from: https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-l eading-technology-in-the-covid-vaccine-race/

Nature Research Custom Media, Cytiva. How mRNA technology came to the rescue [Internet]. Nature Publishing Group; [cited 2024 Feb 24]. Available from: https://www.nature.com/articles/d42473-022-00159-1

Government of Canada CI of HR. The Long Road to mrna vaccines [Internet]. 2021 [cited 2024 Feb 24]. Available from: https://cihr-irsc.gc.ca/e/52424.html

WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access. World Health Organization [Internet]. World Health Organization; 2020 Dec 31 [cited 2024 Feb 24]; Available from: https://www.who.int/news/item/31-12-2020-who-issues-its-first-emergency-use-validation-for-a-c ovid-19-vaccine-and-emphasizes-need-for-equitable-global-access

Burki T. First shared SARS-COV-2 genome: Gisaid vs Virological.org. The Lancet Microbe [Internet]. 2023 Jun [cited 2024 Feb 24];4(6). doi:10.1016/s2666-5247(23)00133-7

WHO. The moderna covid-19 (mRNA-1273) vaccine: What you need to know [Internet]. World Health Organization; 2022 [cited 2024 Feb 24]. Available from: https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine- what-you-need-to-know

Katella K. Comparing the COVID-19 vaccines: How are they different? [Internet]. Yale Medicine; 2023 [cited 2024 Feb 24]. Available from: https://www.yalemedicine.org/news/covid-19-vaccine-comparison

Chaudhury S, Ali T, Mujawar S, Sowmya A, Saldanha D. Dangers of mrna vaccines. Industrial Psychiatry Journal [Internet]. 2021 [cited 2024 Feb 24];30(3):291. doi:10.4103/0972-6748.328833

Pfizer. Harnessing the potential of mrna [Internet]. 2024 [cited 2024 Feb 24]. Available from: https://www.pfizer.com/science/innovation/mrna-technology

Yu D. (ed.) Petsch B. (ed.) mRNA Vaccines; Current Topics in Microbiology and Immunology. Switzerland: Springer Nature; 2022 [cited 2024 Feb 24].

Ilyichev AA, Orlova LA, Sharabrin SV, Karpenko LI. MRNA technology as one of the promising platforms for the SARS-COV-2 vaccine development. Vavilov Journal of Genetics and Breeding [Internet]. 2020 Dec 6 [cited 2024 Feb 24]; 24(7):802–7. doi:10.18699/vj20.676

Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D. MRNA vaccines against SARS-COV-2: Advantages and caveats. International Journal of Molecular Sciences [Internet]. 2023 Mar 21[cited 2024 Feb 24]; 24(6):5944. doi:10.3390/ijms24065944

Matarazzo L, Bettencourt PJ. MRNA vaccines: A new opportunity for malaria, tuberculosis and HIV. Frontiers in Immunology [Internet]. 2023 Apr 24 [cited 2024 Feb 24]; 14. doi:10.3389/fimmu.2023.1172691

Seitz R. Human immunodeficiency virus (HIV). Transfusion Medicine and Hemotherapy [Internet]. 2016 [cited 2024 Feb 24]; 43(3):203–22. doi:10.1159/000445852

Plotkin S. (ed.) et al. Girard MP, Koffe WC. Human Immunodeficiency Virus Vaccines. In: Plotkin’s Vaccines. 7th ed. Philadelphia, Pennsylvania: Elsevier; 2018. p. 400–29.

WHO. HIV and AIDS [Internet]. World Health Organization; 2023 [cited 2024 Feb 24]. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids

Dwivedi L, Shrivastava M. Anti-HIV therapy: Pipeline Approaches and Future Directions. Nature Precedings [Internet]. 2011 Jan 12 [cited 2024 Feb 24]: doi:10.1038/npre.2011.5540.1

World Health Organization. Tuberculosis. [Internet]. 2023 [cited 2024 Feb 24]. Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis

Looney MM, Hatherill M, Musvosvi M, Flynn J, Kagina BM, Frick M, et al. Conference report: Who meeting summary on mrna-based tuberculosis vaccine development. Vaccine [Internet]. 2023 Nov [cited 2024 Feb 24] ;41(48):7060–6. doi:10.1016/j.vaccine.2023.10.026

Kennedy DA, Read AF. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proceedings of the National Academy of Sciences [Internet]. 2018 Dec 17 [cited 2024 Feb 24] ;115(51):12878–86. doi:10.1073/pnas.1717159115

WHO. New TB Vaccine Research [Internet]. World Health Organization; [cited 2024 Feb 24]. Available from: https://www.who.int/teams/global-tuberculosis-programme/research-innovation/vaccines

WHO. Cancer [Internet]. World Health Organization; [cited 2024 Feb 24]. Available from: https://www.who.int/health-topics/cancer#tab=tab_1

Neoplasm (tumor) [Internet]. Yale Medicine; 2023 [cited 2024 Feb 24]. Available from: https://www.yalemedicine.org/conditions/neoplasm

Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K. MRNA-based dendritic cell vaccines. Expert Review of Vaccines [Internet]. 2014 Sept 8 [cited 2024 Feb 24]; 14(2):161–76. doi:10.1586/14760584.2014.957684

Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016 Sep;4(9). doi: 10.1016/S2214-109X(16)30143-7

Ye L, Swingen C, Zhang J. Induced pluripotent stem cells and their potential for basic and Clinical Sciences. Current Cardiology Reviews [Internet]. 2013 Feb 1 [cited 2024 Feb 24]; 9(1):63–72. doi:10.2174/157340313805076278

Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J Immunol. 2005 Oct 1;175(7):633-9. doi: 10.4049/jimmunol.175.7.633.

Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018 Apr 6;359(6382):1355-1360. doi: 10.1126/science.aar7112.

WHO. DNA [Internet]. World Health Organization; [cited 2024 Feb 24]. Available from: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/va ccines-quality/dna

Melo AR, de Macêdo LS, Invenção M da, de Moura IA, da Gama MA, de Melo CM, et al. Third-generation vaccines: Features of nucleic acid vaccines and strategies to improve their efficiency. Genes [Internet]. 2022 Dec 4 [cited 2024 Feb 24] ;13(12):2287. doi:10.3390/genes13122287

Vishwanath S, Carnell GW, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat Nanotechnol. 2023 Mar;18(3):411-417. doi: 10.1038/s41551-023-01094-2.

Hoffmann MAG, Yang Z, Huey-Tubman KE, Cohen AA, Gnanapragasam PNP, Nakatomi LM, et al. ESCRT recruitment to SARS-COV-2 spike induces virus-like particles that improvemrna vaccines. Cell [Internet]. 2023 May [cited 2024 Feb 24];186(11). doi:10.1016/j.cell.2023.04.024

Hoffmann M. Exploring hybrid mRNA vaccine technology for lasting immunity to COVID-19. Vaccine Insights [Internet]. 2024 Feb 02 [cited 2024 Feb 24]; doi: 10.18609/vac.2024.004.

Zost SJ, Carnahan RH. A budding new approach strengthens an important message. Cell [Internet]. 2023 May [cited 2024 Feb 24] ;186(11):2283–5. doi: 10.1016/j.cell.2023.04.034

Downloads

Posted

2024-07-06

Categories