Regulators, processes, and intricacies of the Innate Immune System
DOI:
https://doi.org/10.58445/rars.1092Keywords:
immune, immune system, biotechnology, innate immune system, luciferaseAbstract
Insight into immune system regulation is critical to understanding the homeostasis of the immune system, diagnosis of various autoimmune diseases, and cancer prevention measures in the body. The immune system is incredibly complex, from the organ to tissue to cell to molecular level. The innate immune system is contained within each somatic cell, capable of reacting to pathogen and damage-associated molecular patterns via pattern recognition receptors. These receptors initiate innate immune pathways that lead to inflammation. Understanding the mechanisms and regulators of the innate immune system and methods by which researchers map innate pathways provides a broader and more holistic context for the immune system's role in many diseases and disorders. To that end, this paper aims to record and analyze multiple proteins and mechanisms of the innate immune system, structural/functional elements of proteins that contribute to immune regulation of the NEMO (IKK-γ) complex with a focus on leucine-rich repeat regions, standard methodologies for testing signal pathways, and limitations/possible new methods for immune testing.
References
Bella, J., Hindle, K. L., McEwan, P. A., & Lovell, S. C. (2008). The leucine-rich repeat structure. Cellular and Molecular Life Sciences: CMLS, 65(15), 2307–2333. https://doi.org/10.1007/s00018-008-8019-0
Cabello-Verrugio, C., Santander, C., Cofré, C., Acuña, M. J., Melo, F., & Brandan, E. (2012). The Internal Region Leucine-rich Repeat 6 of Decorin Interacts with Low Density Lipoprotein Receptor-related Protein-1, Modulates Transforming Growth Factor (TGF)-β-dependent Signaling, and Inhibits TGF-β-dependent Fibrotic Response in Skeletal Muscles. Journal of Biological Chemistry, 287(9), 6773–6787. https://doi.org/10.1074/jbc.m111.312488
Carter, M., Essner, R., Goldstein, N., & Iyer, M. (2022, January 1). Chapter 14 - Intracellular Signaling and Biochemical Assays (M. Carter, R. Essner, N. Goldstein, & M. Iyer, Eds.). ScienceDirect; Academic Press. https://www.sciencedirect.com/science/article/pii/B9780128186466000014
Chiu, H.-W., Wu, C.-H., Lin, W.-Y., Wong, W.-T., Tsai, W.-C., Hsu, H.-T., Ho, C.-L., Cheng, S.-M., Cheng, C.-C., Yang, S.-P., Li, L.-H., & Hua, K.-F. (2024). The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation. https://doi.org/10.1007/s10753-023-01939-7
Cui, J., Chen, Y., Wang, H. Y., & Wang, R.-F. (2014). Mechanisms and pathways of innate immune activation and regulation in health and cancer. Human Vaccines & Immunotherapeutics, 10(11), 3270–3285. https://doi.org/10.4161/21645515.2014.979640
Cui, J., Zhu, L., Xia, X., Wang, H. Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z. J., & Wang, R.-F. (2010). NLRC5 Negatively Regulates the NF-κB and Type I Interferon Signaling Pathways. Cell, 141(3), 483–496. https://doi.org/10.1016/j.cell.2010.03.040
Ibeagha-Awemu, E. M., Peters, S. O., Akwanji, K. A., Imumorin, I. G., & Zhao, X. (2016). High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Scientific Reports, 6(1). https://doi.org/10.1038/srep31109
Israel, A. (2009). The IKK Complex, a Central Regulator of NF- B Activation. Cold Spring Harbor Perspectives in Biology, 2(3), a000158–a000158. https://doi.org/10.1101/cshperspect.a000158
Kurien, B. T., & Scofield, R. H. (2015). Western Blotting: An Introduction. Methods in Molecular Biology, 1312, 17–30. https://doi.org/10.1007/978-1-4939-2694-7_5
Kwon, J. J., & Hahn, W. C. (2021). A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Molecular and Cellular Biology, 41(4). https://doi.org/10.1128/mcb.00627-20
Liu, T., Tang, Q., Liu, K., Xie, W., Liu, X., Wang, H., Wang, R.-F., & Cui, J. (2016). TRIM11 Suppresses AIM2 Inflammasome by Degrading AIM2 via p62-Dependent Selective Autophagy. Cell Reports, 16(7), 1988–2002. https://doi.org/10.1016/j.celrep.2016.07.019
Lv, X., Li, S., Yu, Y., Jin, S., Zhang, X., & Li, F. (2023). LvCD14L Acts as a Novel Pattern Recognition Receptor and a Regulator of the Toll Signaling Pathway in Shrimp. International Journal of Molecular Sciences, 24(9), 7770. https://doi.org/10.3390/ijms24097770
Matsushima, N., Takatsuka, S., Miyashita, H., & Kretsinger, R. H. (2019). Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein & Peptide Letters, 26(2), 108–131. https://doi.org/10.2174/0929866526666181208170027
Meng, Q., Cai, C., Sun, T., Wang, Q., Xie, W., Wang, R., & Cui, J. (2015). Reversible ubiquitination shapes NLRC5 function and modulates NF-κB activation switch. Journal of Cell Biology, 211(5), 1025–1040. https://doi.org/10.1083/jcb.201505091
Neefjes, M., Housmans, B. a. C., van den Akker, G. G. H., van Rhijn, L. W., Welting, T. J. M., & van der Kraan, P. M. (2021). Reporter gene comparison demonstrates interference of complex body fluids with secreted luciferase activity. Scientific Reports, 11(1), 1359. https://doi.org/10.1038/s41598-020-80451-6
Oeckinghaus, A., & Ghosh, S. (2009). The NF- B Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1(4), a000034–a000034. https://doi.org/10.1101/cshperspect.a000034
Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G., Bileschi, M., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D., Orengo, C., Pandurangan, A., Rivoire, C., & Sigrist, C. J. A. (2022). InterPro in 2022. Nucleic Acids Research, 51(D1). https://doi.org/10.1093/nar/gkac993
Seok, J. K., Kang, H. C., Cho, Y.-Y., Lee, H. S., & Lee, J. Y. (2021). Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Archives of Pharmacal Research, 44(1), 16–35. https://doi.org/10.1007/s12272-021-01307-9
Wu, C., Su, Z., Lin, M., Ou, J., Zhao, W., Cui, J., & Rong Fu Wang. (2017). NLRP11 attenuates Toll-like receptor signalling by targeting TRAF6 for degradation via the ubiquitin ligase RNF19A. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02073-3
Wu, C., Yang, Y., Ou, J., Zhu, L., Zhao, W., & Cui, J. (2016). LRRC14 attenuates Toll-like receptor-mediated NF-κB signaling through disruption of IKK complex. Experimental Cell Research, 347(1), 65–73. https://doi.org/10.1016/j.yexcr.2016.07.011
Downloads
Posted
Categories
License
Copyright (c) 2024 Arjun Yedavalli
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.