Preprint / Version 1

By precisely describing the planetary conditions and related properties of habitable exoplanets, AI algorithms can improve their identification and analysis.

##article.authors##

  • Jahanvi Chamria Modern High School for Girls
  • Riddhim Garg
  • Harshika Kerkar

DOI:

https://doi.org/10.58445/rars.1028

Keywords:

Artificial Intelligence, Exoplanet Detection

Abstract

This research focuses on the application of Artificial Intelligence (AI) to identify and evaluate the potential for habitability of exoplanets. It aims to train AI models capable of filtering exoplanets from a given dataset and further categorizing their potential for habitability on a scale depending on various planetary conditions. It questions how various crucial factors such as the radiative flux and the eccentricity of a planet affect its ability to support life. To achieve these goals, various AI models were systematically tested and the highest accuracy (~97%) was achieved using a Random Forest Classifier for both exoplanet detection and habitability potential. The study also discusses the importance of the Habitable Zone and liquid water in sustaining life. The data used is from NASA’s Kepler Cumulative dataset. The research highlights the benefits of employing AI models to assess large datasets of exoplanets for the exploration of distant planetary systems. 

References

G. Bruno and P. Sanasi, [Online]. Available: http://www.ousia.it/content/Sezioni/Testi/BrunoDeInfinitoUniverso.pdf.

‌[2] “1979JHA....10...23H Page 23,” adsabs.harvard.edu. https://adsabs.harvard.edu/full/1979JHA....10...23H.

B. Campbell, G. A. H. Walker, and S. Yang, “A search for substellar companions to solar-type stars,” The Astrophysical Journal, vol. 331, p. 902, Aug. 1988, doi: https://doi.org/10.1086/166608.

‌[4] M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature, vol. 378, no. 6555, pp. 355–359, Nov. 1995, doi: https://doi.org/10.1038/378355a0.

‌[5] C. Melis and P. Dufour, “DOES A DIFFERENTIATED, CARBONATE-RICH, ROCKY OBJECT POLLUTE THE WHITE DWARF SDSS J104341.53+085558.2?,” The Astrophysical Journal, vol. 834, no. 1, p. 1, Dec. 2016, doi: https://doi.org/10.3847/1538-4357/834/1/1.

N. Madhusudhan, “Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects,” Annual Review of Astronomy and Astrophysics, vol. 57, no. 1, pp. 617–663, Aug. 2019, doi: https://doi.org/10.1146/annurev-astro-081817-051846.

‌[7] S. Seager and W. Bains, “The search for signs of life on exoplanets at the interface of chemistry and planetary science,” Science Advances, vol. 1, no. 2, p. e1500047, Mar. 2015, doi: https://doi.org/10.1126/sciadv.1500047.

‌[8] J. Horner et al., “Solar System Physics for Exoplanet Research,” Publications of the Astronomical Society of the Pacific, vol. 132, no. 1016, p. 102001, Sep. 2020, doi: https://doi.org/10.1088/1538-3873/ab8eb9.

C. Mordasini, “Planetary population synthesis,” arXiv.org, 2018. https://arxiv.org/abs/1804.01532.

“Project MUSE - Comparative Climatology of Terrestrial Planets,” muse.jhu.edu. https://muse.jhu.edu/chapter/1207495.

‌[11] B. R. Oppenheimer and S. Hinkley, “High-Contrast Observations in Optical and Infrared Astronomy,” Annual Review of Astronomy and Astrophysics, vol. 47, no. 1, pp. 253–289, Sep. 2009, doi: https://doi.org/10.1146/annurev-astro-082708-101717.

‌ [12] “Life Sciences, Society and Policy,” www.scimagojr.com. https://www.scimagojr.com/journalsearch.php?q=21100466413&tip=sid&clean=0

M. Perryman, The Exoplanet Handbook, 2nd ed. Cambridge: Cambridge University Press, 2018. [Online]. Available: https://www.cambridge.org/core/books/exoplanet-handbook/750759E015FDCF469D141F0046198519.

“Discoveries Dashboard | Discovery,” Exoplanet Exploration: Planets Beyond our Solar System. https://exoplanets.nasa.gov/discovery/discoveries-dashboard/.

“Historic Timeline | Explore,” Exoplanet Exploration: Planets Beyond our Solar System. https://exoplanets.nasa.gov/alien-worlds/historic-timeline/#first-planetary-disk-observed.

J. I. Lunine et al., “Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets,” arXiv (Cornell University), Aug. 2008, doi: https://doi.org/10.48550/arxiv.0808.2754.

J. I. Lunine, B. Macintosh, and S. Peale, “The detection and characterization of exoplanets,” Physics Today, vol. 62, no. 5, pp. 46–51, May 2009, doi: https://doi.org/10.1063/1.3141941.

J. T. Wright, G. W. Marcy, A. W. Howard, J. A. Johnson, T. D. Morton, and D. A. Fischer, “THE FREQUENCY OF HOT JUPITERS ORBITING NEARBY SOLAR-TYPE STARS,” The Astrophysical Journal, vol. 753, no. 2, p. 160, Jun. 2012, doi: https://doi.org/10.1088/0004-637x/753/2/160.

‌[19] D. M. Kipping, G. Á. Bakos, L. Buchhave, D. Nesvorný, and A. Schmitt, “THE HUNT FOR EXOMOONS WITHKEPLER(HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT,” The Astrophysical Journal, vol. 750, no. 2, p. 115, Apr. 2012, doi: https://doi.org/10.1088/0004-637x/750/2/115.

N. Madhusudhan, H. Knutson, J. J. Fortney, and T. Barman, Exoplanetary Atmospheres. eprint: arXiv:1402.1169, 2014. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2014prpl.conf..739M/abstract.

D. P. Bennett and S. H. Rhie, “Detecting Earth‐Mass Planets with Gravitational Microlensing,” The Astrophysical Journal, vol. 472, no. 2, pp. 660–664, Dec. 1996, doi: https://doi.org/10.1086/178096.

“Spectroscopy Infographic,” Exoplanet Exploration: Planets Beyond our Solar System. https://exoplanets.nasa.gov/resources/2270/spectroscopy-infographic/

“Exoplanet atmospheres - Department of Physics and Astronomy - Uppsala University, Sweden,” Physics.uu.se, 2019. https://www.physics.uu.se/research/astronomy-and-space-physics/research/planets/exoplanet-atmospheres/.

L. D. Deming and S. Seager, “Illusion and reality in the atmospheres of exoplanets,” Journal of Geophysical Research: Planets, vol. 122, no. 1, pp. 53–75, Jan. 2017, doi: https://doi.org/10.1002/2016je005155.

M. Richmond, “Spectroscopy of exoplanets,” spiff.rit.edu. http://spiff.rit.edu/classes/resceu/lectures/spectra/spectra.html.

L. Kreidberg, “Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations,” arXiv:1709.05941 [astro-ph], pp. 2083–2105, 2018, doi: https://doi.org/10.1007/978-3-319-55333-7_100.

B. Charnay and P. Drossart, “Characterization and modelling of exoplanetary atmospheres,” Comptes Rendus Physique, vol. 24, no. S2, pp. 1–11, Apr. 2023, doi: https://doi.org/10.5802/crphys.143.

J. Sarkar, K. Bhatia, S. Saha, M. Safonova, and S. Sarkar, “Postulating exoplanetary habitability via a novel anomaly detection method,” Monthly Notices of the Royal Astronomical Society, vol. 510, no. 4, pp. 6022–6032, Dec. 2021, doi: https://doi.org/10.1093/mnras/stab3556.

P. Simonetti, G. Vladilo, L. Silva, and A. Sozzetti, “Statistical Properties of Habitable Zones in Stellar Binary Systems,” The Astrophysical Journal, vol. 903, no. 2, p. 141, Nov. 2020, doi: https://doi.org/10.3847/1538-4357/abc074.

J. F. Kasting, R. Kopparapu, R. M. Ramirez, and C. E. Harman, “Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars,” Proceedings of the National Academy of Sciences, vol. 111, no. 35, pp. 12641–12646, Nov. 2013, doi: https://doi.org/10.1073/pnas.1309107110.

D. J. Armstrong et al., “The Host Stars of Keplers Habitable Exoplanets: Superflares, Rotation and Activity,” Monthly Notices of the Royal Astronomical Society, vol. 455, no. 3, pp. 3110–3125, Jan. 2016, doi: https://doi.org/10.1093/mnras/stv2419.

“The Goldilocks Zone ebook by Laura La Bella,” Rakuten Kobo. https://www.kobo.com/us/en/ebook/the-goldilocks-zone-2.

T. Jansen, C. Scharf, M. Way, and A. Del Genio, “Climates of Warm Earth-like Planets. II. Rotational ‘Goldilocks’ Zones for Fractional Habitability and Silicate Weathering,” The Astrophysical Journal, vol. 875, no. 2, p. 79, Apr. 2019, doi: https://doi.org/10.3847/1538-4357/ab113d.

C. Kilic, C. C. Raible, and T. F. Stocker, “Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance,” The Astrophysical Journal, vol. 844, no. 2, p. 147, Aug. 2017, doi: https://doi.org/10.3847/1538-4357/aa7a03.

“Determining the Habitability of Exoplanets Surface Gravitational Acceleration.” Available: https://ulab.berkeley.edu/static/doc/posters/s181.pdf.

“Exploring the Impact of Planetary Mass and Gravity on Habitability,” Space Mesmerise, May 17, 2023. https://spacemesmerise.com/en-in/blogs/astrobiology/exploring-the-impact-of-planetary-mass-and-gravity-on-habitability

N. Madhusudhan, M. Agúndez, J. I. Moses, and Y. Hu, “Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability,” Space Science Reviews, May 12, 2016. [Online]. Available: https://doi.org/10.1007/s11214-016-0254-3.

S. Matousek, “The Juno New Frontiers mission,” Acta Astronautica, Nov. 01, 2007. [Online]. Available: https://doi.org/10.1016/j.actaastro.2006.12.013.

W. Norde, “Colloids and Interfaces in Life Sciences,” CRC Press eBooks, Jun. 20, 2003. [Online]. Available: https://doi.org/10.1201/9780203912157.

J. E. Frederick and D. Lubin, “The budget of biologically active ultraviolet radiation in the Earth-atmosphere system,” Journal of Geophysical Research, vol. 93, no. D4, p. 3825, 1988, doi: 10.1029/jd093id04p03825. [Online]. Available: http://dx.doi.org/10.1029/jd093id04p03825.

S. B. Curtis and J. R. Letaw, “Galactic cosmic rays and cell-hit frequencies outside the magnetosphere,” Advances in Space Research, vol. 9, no. 10, pp. 293–298, Jan. 1989, doi: 10.1016/0273-1177(89)90452-3. [Online]. Available: http://dx.doi.org/10.1016/0273-1177(89)90452-3.

J. F. Kasting, “Earth’s Early Atmosphere,” Science, vol. 259, no. 5097, pp. 920–926, Feb. 1993, doi: 10.1126/science.11536547. [Online]. Available: http://dx.doi.org/10.1126/science.11536547.

E. T. Sundquist, “The Global Carbon Dioxide Budget,” Science, vol. 259, no. 5097, pp. 934–941, Feb. 1993, doi: 10.1126/science.259.5097.934. [Online]. Available: http://dx.doi.org/10.1126/science.259.5097.934.

D. Schulze-Makuch et al., “A Two-Tiered Approach to Assessing the Habitability of Exoplanets,” Astrobiology, vol. 11, no. 10, pp. 1041–1052, Dec. 2011, doi: 10.1089/ast.2010.0592. [Online]. Available: http://dx.doi.org/10.1089/ast.2010.0592.

J. F. Kasting and J. L. Siefert, “Life and the Evolution of Earth’s Atmosphere,” Science, vol. 296, no. 5570, pp. 1066–1068, May 2002, doi: 10.1126/science.1071184. [Online]. Available: http://dx.doi.org/10.1126/science.1071184.

H. Lammer et al., “Geophysical and Atmospheric Evolution of Habitable Planets,” Astrobiology, vol. 10, no. 1, pp. 45–68, Jan. 2010, doi: 10.1089/ast.2009.0368. [Online]. Available: http://dx.doi.org/10.1089/ast.2009.0368.

C. H. Lineweaver, “W. T. Sullivan III & J. A. Baross (eds) 2007. Planets and Life. The Emerging Science of Astrobiology. xxi + 604 pp. Cambridge, New York, Melbourne: Cambridge University Press. Price £80.00, US $150.00 (hard covers), £40.00, US $75.00 (paperback). ISBN 9780 521 82421 7; 9780 521 53102 3 (pb).,” Geological Magazine, vol. 145, no. 4, pp. 607–607, Jun. 2008, doi: 10.1017/s0016756808004792. [Online]. Available: http://dx.doi.org/10.1017/s0016756808004792.

J. F. Rowe et al., “The Very Low Albedo of an Extrasolar Planet:MOSTSpace‐based Photometry of HD 209458,” The Astrophysical Journal, vol. 689, no. 2, pp. 1345–1353, Dec. 2008, doi: 10.1086/591835. [Online]. Available: http://dx.doi.org/10.1086/591835.

N. B. Cowan and E. Agol, “THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS,” The Astrophysical Journal, vol. 729, no. 1, p. 54, Feb. 2011, doi: 10.1088/0004-637x/729/1/54. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/729/1/54.

L. N. Irwin and D. Schulze-Makuch, “Life’s Fundamentals,” Nov. 19, 2010. [Online]. Available: https://doi.org/10.1007/978-1-4419-1647-1_3.

A. Ekenbäck et al., “ENERGETIC NEUTRAL ATOMS AROUND HD 209458b: ESTIMATIONS OF MAGNETOSPHERIC PROPERTIES,” The Astrophysical Journal, vol. 709, no. 2, pp. 670–679, Jan. 2010, doi: 10.1088/0004-637x/709/2/670. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/709/2/670.

A. A. Vidotto, M. Jardine, and Ch. Helling, “EARLY UV INGRESS IN WASP-12b: MEASURING PLANETARY MAGNETIC FIELDS,” The Astrophysical Journal, vol. 722, no. 2, pp. L168–L172, Sep. 2010, doi: 10.1088/2041-8205/722/2/l168. [Online]. Available: http://dx.doi.org/10.1088/2041-8205/722/2/l168.

L. N. Irwin and D. Schulze-Makuch, “Assessing the Plausibility of Life on Other Worlds,” Astrobiology, vol. 1, no. 2, pp. 143–160, Jun. 2001, doi: 10.1089/153110701753198918. [Online]. Available: http://dx.doi.org/10.1089/153110701753198918.

“Life in the Universe: Expectations and Constraints, by D. Schulze-Makuch and L. N. Irwin.,” Astrobiology, vol. 4, no. 3, pp. 406–407, Jul. 2004, doi: 10.1089/1531107041939448. [Online]. Available: http://dx.doi.org/10.1089/1531107041939448.

D. Schulze-Makuch and D. H. Grinspoon, “Biologically Enhanced Energy and Carbon Cycling on Titan?,” Astrobiology, vol. 5, no. 4, pp. 560–567, Aug. 2005, doi: 10.1089/ast.2005.5.560. [Online]. Available: http://dx.doi.org/10.1089/ast.2005.5.560.

R. D. Wolstencroft and J. A. Raven, “Photosynthesis: Likelihood of Occurrence and Possibility of Detection on Earth-like Planets,” Icarus, vol. 157, no. 2, pp. 535–548, Jun. 2002, doi: 10.1006/icar.2002.6854. [Online]. Available: http://dx.doi.org/10.1006/icar.2002.6854.

A. W. J. Muller, “Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion,” Progress in Biophysics and Molecular Biology, vol. 63, no. 2, pp. 193–231, 1995, doi: 10.1016/0079-6107(95)00004-7. [Online]. Available: http://dx.doi.org/10.1016/0079-6107(95)00004-7.

V. S. Meadows and D. Crisp, “Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface,” Journal of Geophysical Research: Planets, vol. 101, no. E2, pp. 4595–4622, Feb. 1996, doi: 10.1029/95je03567. [Online]. Available: http://dx.doi.org/10.1029/95je03567.

N. Mueller et al., “Venus surface thermal emission at 1μm in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions,” Journal of Geophysical Research, vol. 113, Dec. 2008, doi: 10.1029/2008je003118. [Online]. Available: http://dx.doi.org/10.1029/2008je003118.

T. Schindler, “Synthetic Spectra of Simulated Terrestrial Atmospheres Containing Possible Biomarker Gases,” Icarus, vol. 145, no. 1, pp. 262–271, May 2000, doi: 10.1006/icar.2000.6340. [Online]. Available: http://dx.doi.org/10.1006/icar.2000.6340.

M. M. Joshi, R. M. Haberle, and R. T. Reynolds, “Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability,” Icarus, vol. 129, no. 2, pp. 450–465, Oct. 1997, doi: 10.1006/icar.1997.5793. [Online]. Available: http://dx.doi.org/10.1006/icar.1997.5793.

F. Westall et al., “Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial samples,” Journal of Geophysical Research: Planets, vol. 105, no. E10, pp. 24511–24527, Oct. 2000, doi: 10.1029/2000je001250. [Online]. Available: http://dx.doi.org/10.1029/2000je001250.

N. R. Pace, “The universal nature of biochemistry,” Proceedings of the National Academy of Sciences, vol. 98, no. 3, pp. 805–808, Jan. 2001, doi: 10.1073/pnas.98.3.805. [Online]. Available: http://dx.doi.org/10.1073/pnas.98.3.805.

W. Bains, “Many Chemistries Could Be Used to Build Living Systems,” Astrobiology, vol. 4, no. 2, pp. 137–167, Jun. 2004, doi: 10.1089/153110704323175124. [Online]. Available: http://dx.doi.org/10.1089/153110704323175124.

S. A. Benner, A. Ricardo, and M. A. Carrigan, “Is there a common chemical model for life in the universe?,” Current Opinion in Chemical Biology, vol. 8, no. 6, pp. 672–689, Dec. 2004, doi: 10.1016/j.cbpa.2004.10.003. [Online]. Available: http://dx.doi.org/10.1016/j.cbpa.2004.10.003.

J. D. Anderson, G. Schubert, R. A. Jacobson, E. L. Lau, W. B. Moore, and W. L. Sjogren, “Europa’s Differentiated Internal Structure: Inferences from Four Galileo Encounters,” Science, vol. 281, no. 5385, pp. 2019–2022, Sep. 1998, doi: 10.1126/science.281.5385.2019. [Online]. Available: http://dx.doi.org/10.1126/science.281.5385.2019.

C. C. Porco et al., “Cassini Observes the Active South Pole of Enceladus,” Science, vol. 311, no. 5766, pp. 1393–1401, Mar. 2006, doi: 10.1126/science.1123013. [Online]. Available: http://dx.doi.org/10.1126/science.1123013.

A. Burrows and C. M. Sharp, “Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres,” The Astrophysical Journal, vol. 512, no. 2, pp. 843–863, Feb. 1999, doi: 10.1086/306811. [Online]. Available: http://dx.doi.org/10.1086/306811.

C. Visscher, K. Lodders, and B. Fegley, Jr., “Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low‐Mass Dwarf Stars. II. Sulfur and Phosphorus,” The Astrophysical Journal, vol. 648, no. 2, pp. 1181–1195, Sep. 2006, doi: 10.1086/506245. [Online]. Available: http://dx.doi.org/10.1086/506245.

J. I. Moses et al., “COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b,” The Astrophysical Journal, vol. 777, no. 1, p. 34, Oct. 2013, doi: 10.1088/0004-637x/777/1/34. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/777/1/34.

J. J. Fortney, M. S. Marley, and J. W. Barnes, “Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits,” The Astrophysical Journal, vol. 659, no. 2, pp. 1661–1672, Apr. 2007, doi: 10.1086/512120. [Online]. Available: http://dx.doi.org/10.1086/512120.

A. Lecavelier des Etangs, F. Pont, A. Vidal-Madjar, and D. Sing, “Rayleigh scattering in the transit spectrum of HD 189733b,” Astronomy & Astrophysics, vol. 481, no. 2, pp. L83–L86, Feb. 2008, doi: 10.1051/0004-6361:200809388. [Online]. Available: http://dx.doi.org/10.1051/0004-6361:200809388.

J. Patience, R. R. King, R. J. De Rosa, and C. Marois, “The highest resolution near infrared spectrum of the imaged planetary mass companion 2M1207 b,” Astronomy and Astrophysics, vol. 517, p. A76, Jul. 2010, doi: 10.1051/0004-6361/201014173. [Online]. Available: http://dx.doi.org/10.1051/0004-6361/201014173.

J. Gagné, D. Lafrenière, R. Doyon, L. Malo, and É. Artigau, “BANYAN. II. VERY LOW MASS AND SUBSTELLAR CANDIDATE MEMBERS TO NEARBY, YOUNG KINEMATIC GROUPS WITH PREVIOUSLY KNOWN SIGNS OF YOUTH,” The Astrophysical Journal, vol. 783, no. 2, p. 121, Feb. 2014, doi: 10.1088/0004-637x/783/2/121. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/783/2/121.

M. Bonnefoy et al., “Physical and orbital properties ofβPictoris b,” Astronomy & Astrophysics, vol. 567, p. L9, Jul. 2014, doi: 10.1051/0004-6361/201424041. [Online]. Available: http://dx.doi.org/10.1051/0004-6361/201424041.

T. S. Barman, Q. M. Konopacky, B. Macintosh, and C. Marois, “SIMULTANEOUS DETECTION OF WATER, METHANE, AND CARBON MONOXIDE IN THE ATMOSPHERE OF EXOPLANET HR 8799 b,” The Astrophysical Journal, vol. 804, no. 1, p. 61, May 2015, doi: 10.1088/0004-637x/804/1/61. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/804/1/61.

A. C. Lockwood et al., “NEAR-IR DIRECT DETECTION OF WATER VAPOR IN TAU BOÖTIS b,” The Astrophysical Journal, vol. 783, no. 2, p. L29, Feb. 2014, doi: 10.1088/2041-8205/783/2/l29. [Online]. Available: http://dx.doi.org/10.1088/2041-8205/783/2/l29.

M. Brogi, R. J. de Kok, J. L. Birkby, H. Schwarz, and I. A. G. Snellen, “Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b,” Astronomy & Astrophysics, vol. 565, p. A124, May 2014, doi: 10.1051/0004-6361/201423537. [Online]. Available: http://dx.doi.org/10.1051/0004-6361/201423537.

J. L. Birkby et al., “Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm★,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 436, no. 1, pp. L35–L39, Aug. 2013, doi: 10.1093/mnrasl/slt107. [Online]. Available: http://dx.doi.org/10.1093/mnrasl/slt107.

S. K. Leggett, C. V. Morley, M. S. Marley, D. Saumon, J. J. Fortney, and C. Visscher, “A COMPARISON OF NEAR-INFRARED PHOTOMETRY AND SPECTRA FOR Y DWARFS WITH A NEW GENERATION OF COOL CLOUDY MODELS,” The Astrophysical Journal, vol. 763, no. 2, p. 130, Jan. 2013, doi: 10.1088/0004-637x/763/2/130. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/763/2/130.

M. R. Line, J. J. Fortney, M. S. Marley, and S. Sorahana, “A DATA-DRIVEN APPROACH FOR RETRIEVING TEMPERATURES AND ABUNDANCES IN BROWN DWARF ATMOSPHERES,” The Astrophysical Journal, vol. 793, no. 1, p. 33, Sep. 2014, doi: 10.1088/0004-637x/793/1/33. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/793/1/33.

M. R. Line, J. Teske, B. Burningham, J. J. Fortney, and M. S. Marley, “UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B,” The Astrophysical Journal, vol. 807, no. 2, p. 183, Jul. 2015, doi: 10.1088/0004-637x/807/2/183. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/807/2/183.

I. N. Reid and S. L. Hawley, “New Light on Dark Stars,” 2005, doi: 10.1007/3-540-27610-6. [Online]. Available: http://dx.doi.org/10.1007/3-540-27610-6.

J.-M. Désert et al., “TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b,” Astronomy & Astrophysics, vol. 492, no. 2, pp. 585–592, Oct. 2008, doi: 10.1051/0004-6361:200810355. [Online]. Available: http://dx.doi.org/10.1051/0004-6361:200810355.

H. J. Hoeijmakers, R. J. de Kok, I. A. G. Snellen, M. Brogi, J. L. Birkby, and H. Schwarz, “A search for TiO in the optical high-resolution transmission spectrum of HD 209458b: Hindrance due to inaccuracies in the line database,” Astronomy & Astrophysics, vol. 575, p. A20, Feb. 2015, doi: 10.1051/0004-6361/201424794. [Online]. Available: http://dx.doi.org/10.1051/0004-6361/201424794.

H. A. Knutson et al., “ASPITZERTRANSMISSION SPECTRUM FOR THE EXOPLANET GJ 436b, EVIDENCE FOR STELLAR VARIABILITY, AND CONSTRAINTS ON DAYSIDE FLUX VARIATIONS,” The Astrophysical Journal, vol. 735, no. 1, p. 27, Jun. 2011, doi: 10.1088/0004-637x/735/1/27. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/735/1/27.

F. Pont, D. K. Sing, N. P. Gibson, S. Aigrain, G. Henry, and N. Husnoo, “The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations,” Monthly Notices of the Royal Astronomical Society, vol. 432, no. 4, pp. 2917–2944, May 2013, doi: 10.1093/mnras/stt651. [Online]. Available: http://dx.doi.org/10.1093/mnras/stt651.

J. K. Barstow, S. Aigrain, P. G. J. Irwin, S. Kendrew, and L. N. Fletcher, “Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching,” Monthly Notices of the Royal Astronomical Society, vol. 448, no. 3, pp. 2546–2561, Mar. 2015, doi: 10.1093/mnras/stv186. [Online]. Available: http://dx.doi.org/10.1093/mnras/stv186.

C. J. Hansen, J. C. Schwartz, and N. B. Cowan, “Features in the broad-band eclipse spectra of exoplanets: signal or noise?,” Monthly Notices of the Royal Astronomical Society, vol. 444, no. 4, pp. 3632–3640, Sep. 2014, doi: 10.1093/mnras/stu1699. [Online]. Available: http://dx.doi.org/10.1093/mnras/stu1699.

L. Kaltenegger and W. A. Traub, “TRANSITS OF EARTH-LIKE PLANETS,” The Astrophysical Journal, vol. 698, no. 1, pp. 519–527, May 2009, doi: 10.1088/0004-637x/698/1/519. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/698/1/519.

D. Deming et al., “Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by theJames Webb Space Telescope,” Publications of the Astronomical Society of the Pacific, vol. 121, no. 883, pp. 952–967, Sep. 2009, doi: 10.1086/605913. [Online]. Available: http://dx.doi.org/10.1086/605913.

M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The Chemical Composition of the Sun,” Annual Review of Astronomy and Astrophysics, vol. 47, no. 1, pp. 481–522, Sep. 2009, doi: 10.1146/annurev.astro.46.060407.145222. [Online]. Available: http://dx.doi.org/10.1146/annurev.astro.46.060407.145222.

N. Madhusudhan, H. Knutson, J. J. Fortney, and T. Barman, “Exoplanetary Atmospheres,” University of Arizona Press eBooks, Jan. 01, 2014. [Online]. Available: https://doi.org/10.2458/azu_uapress_9780816531240-ch032.

K. Heng and A. P. Showman, “Atmospheric Dynamics of Hot Exoplanets,” Annual Review of Earth and Planetary Sciences, vol. 43, no. 1, pp. 509–540, May 2015, doi: 10.1146/annurev-earth-060614-105146. [Online]. Available: http://dx.doi.org/10.1146/annurev-earth-060614-105146.

Q. M. Konopacky, T. S. Barman, B. A. Macintosh, and C. Marois, “Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere,” Science, vol. 339, no. 6126, pp. 1398–1401, Mar. 2013, doi: 10.1126/science.1232003. [Online]. Available: http://dx.doi.org/10.1126/science.1232003.

N. B. Cowan et al., “THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS,” The Astrophysical Journal, vol. 747, no. 1, p. 82, Feb. 2012, doi: 10.1088/0004-637x/747/1/82. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/747/1/8.

I. J. M. Crossfield, T. Barman, B. M. S. Hansen, I. Tanaka, and T. Kodama, “RE-EVALUATING WASP-12b: STRONG EMISSION AT 2.315 μm, DEEPER OCCULTATIONS, AND AN ISOTHERMAL ATMOSPHERE,” The Astrophysical Journal, vol. 760, no. 2, p. 140, Nov. 2012, doi: 10.1088/0004-637x/760/2/140. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/760/2/140.

M. Swain et al., “Probing the extreme planetary atmosphere of WASP-12b,” Icarus, vol. 225, no. 1, pp. 432–445, Jul. 2013, doi: 10.1016/j.icarus.2013.04.003. [Online]. Available: http://dx.doi.org/10.1016/j.icarus.2013.04.003.

E. B. Bechter et al., “WASP-12b AND HAT-P-8b ARE MEMBERS OF TRIPLE STAR SYSTEMS,” The Astrophysical Journal, vol. 788, no. 1, p. 2, May 2014, doi: 10.1088/0004-637x/788/1/2. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/788/1/2.

M. R. Line, H. Knutson, A. S. Wolf, and Y. L. Yung, “A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS,” The Astrophysical Journal, vol. 783, no. 2, p. 70, Feb. 2014, doi: 10.1088/0004-637x/783/2/70. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/783/2/70.

K. B. Stevenson, J. L. Bean, N. Madhusudhan, and J. Harrington, “DECIPHERING THE ATMOSPHERIC COMPOSITION OF WASP-12b: A COMPREHENSIVE ANALYSIS OF ITS DAYSIDE EMISSION,” The Astrophysical Journal, vol. 791, no. 1, p. 36, Jul. 2014, doi: 10.1088/0004-637x/791/1/36. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/791/1/36.

S. Chapman, “XXXV.On ozone and atomic oxygen in the upper atmosphere,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 10, no. 64, pp. 369–383, Sep. 1930, doi: 10.1080/14786443009461588. [Online]. Available: http://dx.doi.org/10.1080/14786443009461588.

J. I. Moses et al., “DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b,” The Astrophysical Journal, vol. 737, no. 1, p. 15, Jul. 2011, doi: 10.1088/0004-637x/737/1/15. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/737/1/15.

Y. Miguel and L. Kaltenegger, “EXPLORING ATMOSPHERES OF HOT MINI-NEPTUNES AND EXTRASOLAR GIANT PLANETS ORBITING DIFFERENT STARS WITH APPLICATION TO HD 97658b, WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b,” The Astrophysical Journal, Dec. 20, 2013. [Online]. Available: https://doi.org/10.1088/0004-637x/780/2/166.

K. Haynes, A. M. Mandell, N. Madhusudhan, D. Deming, and H. Knutson, “SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b,” The Astrophysical Journal, vol. 806, no. 2, p. 146, Jun. 2015, doi: 10.1088/0004-637x/806/2/146. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/806/2/146.

I. J. M. Crossfield, “Observations of Exoplanet Atmospheres,” Publications of the Astronomical Society of the Pacific, vol. 127, no. 956, pp. 941–960, Oct. 2015, doi: 10.1086/683115. [Online]. Available: http://dx.doi.org/10.1086/683115.

T. S. Barman, B. Macintosh, Q. M. Konopacky, and C. Marois, “CLOUDS AND CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HR8799b,” The Astrophysical Journal, vol. 733, no. 1, p. 65, May 2011, doi: 10.1088/0004-637x/733/1/65. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/733/1/65.

T. S. Barman, Q. M. Konopacky, B. Macintosh, and C. Marois, “SIMULTANEOUS DETECTION OF WATER, METHANE, AND CARBON MONOXIDE IN THE ATMOSPHERE OF EXOPLANET HR 8799 b,” The Astrophysical Journal, vol. 804, no. 1, p. 61, May 2015, doi: 10.1088/0004-637x/804/1/61. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/804/1/61.

J.-M. Lee, K. Heng, and P. G. J. Irwin, “ATMOSPHERIC RETRIEVAL ANALYSIS OF THE DIRECTLY IMAGED EXOPLANET HR 8799b,” The Astrophysical Journal, vol. 778, no. 2, p. 97, Nov. 2013, doi: 10.1088/0004-637x/778/2/97. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/778/2/97.

A. J. Skemer et al., “DIRECTLY IMAGED L-T TRANSITION EXOPLANETS IN THE MID-INFRARED,” The Astrophysical Journal, vol. 792, no. 1, p. 17, Aug. 2014, doi: 10.1088/0004-637x/792/1/17. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/792/1/17.

P. Lavvas, T. Koskinen, and R. V. Yelle, “ELECTRON DENSITIES AND ALKALI ATOMS IN EXOPLANET ATMOSPHERES,” The Astrophysical Journal, vol. 796, no. 1, p. 15, Oct. 2014, doi: 10.1088/0004-637x/796/1/15. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/796/1/15.

D. Charbonneau, T. M. Brown, R. W. Noyes, and R. L. Gilliland, “Detection of an Extrasolar Planet Atmosphere,” The Astrophysical Journal, vol. 568, no. 1, pp. 377–384, Mar. 2002, doi: 10.1086/338770. [Online]. Available: http://dx.doi.org/10.1086/338770.

S. Redfield, M. Endl, W. D. Cochran, and L. Koesterke, “Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum,” The Astrophysical Journal, vol. 673, no. 1, pp. L87–L90, Jan. 2008, doi: 10.1086/527475. [Online]. Available: http://dx.doi.org/10.1086/527475.

J. F. Kasting, J. B. Pollack, and D. Crisp, “Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth,” Journal of Atmospheric Chemistry, vol. 1, no. 4, pp. 403–428, 1984, doi: 10.1007/bf00053803. [Online]. Available: http://dx.doi.org/10.1007/bf00053803.

J. F. Kasting and T. P. Ackerman, “Climatic Consequences of Very High Carbon Dioxide Levels in the Earth’s Early Atmosphere,” Science, vol. 234, no. 4782, pp. 1383–1385, Dec. 1986, doi: 10.1126/science.11539665. [Online]. Available: http://dx.doi.org/10.1126/science.11539665.

J. F. Kasting, “Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere,” Precambrian Research, vol. 34, no. 3–4, pp. 205–229, Jan. 1987, doi: 10.1016/0301-9268(87)90001-5. [Online]. Available: http://dx.doi.org/10.1016/0301-9268(87)90001-5.

J. F. Kasting, “Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus,” Icarus, vol. 74, no. 3, pp. 472–494, Jun. 1988, doi: 10.1016/0019-1035(88)90116-9. [Online]. Available: http://dx.doi.org/10.1016/0019-1035(88)90116-9.

J. F. Kasting, D. P. Whitmire, and R. T. Reynolds, “Habitable Zones around Main Sequence Stars,” Icarus, vol. 101, no. 1, pp. 108–128, Jan. 1993, doi: 10.1006/icar.1993.1010. [Online]. Available: http://dx.doi.org/10.1006/icar.1993.1010.

J. F. Kasting, H. Chen, and R. K. Kopparapu, “STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS,” The Astrophysical Journal, vol. 813, no. 1, p. L3, Oct. 2015, doi: 10.1088/2041-8205/813/1/l3. [Online]. Available: http://dx.doi.org/10.1088/2041-8205/813/1/l3.

A. A. Pavlov, J. F. Kasting, L. L. Brown, K. A. Rages, and R. Freedman, “Greenhouse warming by CH4in the atmosphere of early Earth,” Journal of Geophysical Research: Planets, vol. 105, no. E5, pp. 11981–11990, May 2000, doi: 10.1029/1999je001134. [Online]. Available: http://dx.doi.org/10.1029/1999je001134.

A. A. Pavlov, M. T. Hurtgen, J. F. Kasting, and M. A. Arthur, “Methane-rich Proterozoic atmosphere?,” Geology, vol. 31, no. 1, p. 87, 2003 [Online]. Available: http://dx.doi.org/10.1130/0091-7613(2003)031.

J. F. Kasting and M. T. Howard, “Atmospheric composition and climate on the early Earth,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 361, no. 1474, pp. 1733–1742, Sep. 2006, doi: 10.1098/rstb.2006.1902. [Online]. Available: http://dx.doi.org/10.1098/rstb.2006.1902.

J. D. Haqq-Misra, S. D. Domagal-Goldman, P. J. Kasting, and J. F. Kasting, “A Revised, Hazy Methane Greenhouse for the Archean Earth,” Astrobiology, vol. 8, no. 6, pp. 1127–1137, Dec. 2008, doi: 10.1089/ast.2007.0197. [Online]. Available: http://dx.doi.org/10.1089/ast.2007.0197.

R. K. Kopparapu et al., “HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES,” The Astrophysical Journal, vol. 765, no. 2, p. 131, Feb. 2013, doi: 10.1088/0004-637x/765/2/131. [Online]. Available: http://dx.doi.org/10.1088/0004-637x/765/2/131.

G. Arney et al., “The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth,” Astrobiology, vol. 16, no. 11, pp. 873–899, Nov. 2016, doi: 10.1089/ast.2015.1422. [Online]. Available: http://dx.doi.org/10.1089/ast.2015.1422.

G. N. Arney et al., “Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets,” The Astrophysical Journal, vol. 836, no. 1, p. 49, Feb. 2017, doi: 10.3847/1538-4357/836/1/49. [Online]. Available: http://dx.doi.org/10.3847/1538-4357/836/1/49.

C. Goldblatt and K. J. Zahnle, “Clouds and the Faint Young Sun Paradox,” Climate of the Past, vol. 7, no. 1, pp. 203–220, Mar. 2011, doi: 10.5194/cp-7-203-2011. [Online]. Available: http://dx.doi.org/10.5194/cp-7-203-2011.

T. Fauchez, G. Arney, R. Kumar Kopparapu, and S. Domagal Goldman, “Explicit cloud representation in the Atmos 1D climate model for Earth and rocky planet applications,” AIMS Geosciences, vol. 4, no. 4, pp. 180–191, 2018, doi: 10.3934/geosci.2018.4.180. [Online]. Available: http://dx.doi.org/10.3934/geosci.2018.4.180.

E. Roeckner et al., “Model description,” 2003.[Online]. Available: https://pure.mpg.de/rest/items/item_995269_4/component/file_995268/content.

E. Roeckner et al., “Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model,” Journal of Climate, vol. 19, no. 16, pp. 3771–3791, Aug. 2006, doi: https://doi.org/10.1175/jcli3824.1.

M. Giorgetta et al., “Berichte zur Erdsystemforschung The atmospheric general circulation model ECHAM6 Model description,” 2013. [Online]. Available: https://pure.mpg.de/rest/items/item_1810480/component/file_1810481/content.

B. Ruiz Cobo and J. C. del Toro Iniesta, “Inversion of Stokes profiles,” The Astrophysical Journal, vol. 398, p. 375, Oct. 1992, doi: 10.1086/171862. [Online]. Available: http://dx.doi.org/10.1086/171862.

H. Socas-Navarro, “A high-resolution three-dimensional model of the solar photosphere derived from Hinode observations,” Astronomy & Astrophysics, vol. 529, p. A37, Mar. 2011, doi: 10.1051/0004-6361/201015805. [Online]. Available: http://dx.doi.org/10.1051/0004-6361/201015805.

M. Asplund, Å. Nordlund, R. Trampedach, and R. Stein, “3D hydrodynamical model atmospheres of metal-poor stars Evidence for a low primordial Li abundance,” 1999. [Online]. Available: https://arxiv.org/pdf/astro-ph/9905059.pdf.

R. Collet, M. Asplund, and R. Trampedach, “The Chemical Compositions of the Extreme Halo Stars HE 0107-5240 and HE 1327-2326 Inferred from Three-dimensional Hydrodynamical Model Atmospheres,” The Astrophysical Journal, vol. 644, no. 2, pp. L121–L124, Jun. 2006, doi: 10.1086/505643. [Online]. Available: http://dx.doi.org/10.1086/505643.

R. Collet, M. Asplund, and R. Trampedach, “Three-dimensional hydrodynamical simulations of surface convection in red giant stars,” Astronomy & Astrophysics, vol. 469, no. 2, pp. 687–706, Apr. 2007, doi: 10.1051/0004-6361:20066321. [Online]. Available: http://dx.doi.org/10.1051/0004-6361:20066321.

M. Asplund, Å. Nordlund, R. Trampedach, and R. Stein, “3D hydrodynamical model atmospheres of metal-poor stars Evidence for a low primordial Li abundance,” 1999. Available: https://arxiv.org/pdf/astro-ph/9905059.pdf.

E. Caffau, H.-G. Ludwig, M. Steffen, B. Freytag, and P. Bonifacio, “Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere,” Solar Physics, vol. 268, no. 2, pp. 255–269, Mar. 2010, doi: 10.1007/s11207-010-9541-4. [Online]. Available: http://dx.doi.org/10.1007/s11207-010-9541-4.

R. Collet, Å. Nordlund, M. Asplund, W. Hayek, and R. Trampedach, “Memorie della ÙÒ Ò Ò ÐÝ× × Ó Ø À ÐÓ ÒØ À ½¾¾ ¿ Û Ø Ì Ö 1 Ñ Ò× ÓÒ Ð ÅÓ Ð ËØ ÐÐ Ö ØÑÓ×Ô Ö ×,” Mem. S.A.It, vol. 79, p. 1, 2009, [Online]. Available: https://arxiv.org/pdf/0909.0690.

J. I. González Hernández, P. Bonifacio, H.-G. Ludwig, E. Caffau, N. T. Behara, and B. Freytag, “Galactic evolution of oxygen,” Astronomy and Astrophysics, vol. 519, p. A46, Sep. 2010, doi: 10.1051/0004-6361/201014397. [Online]. Available: http://dx.doi.org/10.1051/0004-6361/201014397.

A. Frebel, R. Collet, K. Eriksson, N. Christlieb, and W. Aoki, “HE 1327−2326, an Unevolved Star with [Fe/H]<−5.0. II. New 3D−1D Corrected Abundances from a Very Large Telescope UVES Spectrum,” The Astrophysical Journal, vol. 684, no. 1, pp. 588–602, Sep. 2008, doi: 10.1086/590327. [Online]. Available: http://dx.doi.org/10.1086/590327.

C. Rosenthal, J. Christensen-Dalsgaard, Å. Nordlund, R. Stein, and R. Trampedach, “ASTRONOMY AND ASTROPHYSICS Convective contributions to the frequencies of solar oscillations,” 1999. [Online]. Available: https://arxiv.org/pdf/astro-ph/9803206.pdf.

A. Nordlund and R. F. Stein, “Solar Oscillations and Convection. I. Formalism for Radial Oscillations,” The Astrophysical Journal, vol. 546, no. 1, pp. 576–584, Jan. 2001, doi: 10.1086/318217. [Online]. Available: http://dx.doi.org/10.1086/318217.

R. F. Stein and A. Nordlund, “Solar Oscillations and Convection. II. Excitation of Radial Oscillations,” The Astrophysical Journal, vol. 546, no. 1, pp. 585–603, Jan. 2001, doi: 10.1086/318218. [Online]. Available: http://dx.doi.org/10.1086/318218.

Z. Magic et al., “The Stagger-grid: A grid of 3D stellar atmosphere models,” Astronomy and Astrophysics, vol. 557, pp. A26–A26, Aug. 2013, doi: https://doi.org/10.1051/0004-6361/201321274.

S. C. Odewahn et al., “The Digitized Second Palomar Observatory Sky Survey (DPOSS). III. Star-Galaxy Separation,” The Astronomical Journal, vol. 128, no. 6, pp. 3092–3107, Dec. 2004, doi: 10.1086/425525. [Online]. Available: http://dx.doi.org/10.1086/425525.

W. Zheng et al., “Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey,” The Astronomical Journal, vol. 120, no. 4, pp. 1607–1611, Oct. 2000, doi: 10.1086/301570. [Online]. Available: http://dx.doi.org/10.1086/301570.

C. CUI et al., “Astronomy research in big-data era,” Chinese Science Bulletin (Chinese Version), vol. 60, no. 5–6, p. 445, 2015, doi: https://doi.org/10.1360/n972014-00839.

K. Wang, P. Guo, F. Yu, L. Duan, Y. Wang, and H. Du, “Computational Intelligence in Astronomy: A Survey,” International Journal of Computational Intelligence Systems, Jan. 01, 2018. [Online]. Available: https://doi.org/10.2991/ijcis.11.1.43.

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart, and D. Sandler, “Adaptive optics for array telescopes using neural-network techniques,” Nature, vol. 348, no. 6298, pp. 221–224, Nov. 1990, doi: 10.1038/348221a0. [Online]. Available: http://dx.doi.org/10.1038/348221a0.

F.-M. . Hu and M.-H. . Jiang, “The fuzzy classification of the solar cycle and the prediction for the 22nd solar cycle.,” Chinese Journal of Space Science, vol. 5, pp. 237–244, Oct. 1985, [Online]. Available: https://ui.adsabs.harvard.edu/abs/1985ChJSS...5..237H/abstract.

E. Eberbach, “Toward a theory of evolutionary computation,” Biosystems, vol. 82, no. 1, pp. 1–19, Oct. 2005, doi: https://doi.org/10.1016/j.biosystems.2005.05.006.

“Anomalous Behavior Detection in Galaxies and Exoplanets using ML & DL Techniques,” ieeexplore.ieee.org. https://ieeexplore.ieee.org/document/9591860.

‌[154] “A Study of Light Intensity of Stars for Exoplanet Detection using Machine Learning,” ieeexplore.ieee.org. https://ieeexplore.ieee.org/document/9864366.

“Exploring Exoplanets using kNN, Logistic Regression and Decision Trees,” ieeexplore.ieee.org. https://ieeexplore.ieee.org/document/9914278.

‌[156] R. Jagtap, U. Inamdar, S. Dere, M. Fatima, and N. B. Shardoor, “Habitability of Exoplanets using Deep Learning,” 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Apr. 2021, doi: https://doi.org/10.1109/iemtronics52119.2021.9422571.

‌[157] I. Priyadarshini and V. Puri, “A convolutional neural network (CNN) based ensemble model for exoplanet detection,” Earth Science Informatics, Feb. 2021, doi: https://doi.org/10.1007/s12145-021-00579-5.

‌[158] “Detection and classification of exoplanets using hybrid kNN model,” ieeexplore.ieee.org. https://ieeexplore.ieee.org/document/9741029.

Christopher J. Smith, Geronimo L. Villanueva, and Gabrielle Suissa. 2020. Imagining Exoplanets: Visualizing Faraway Worlds Using Global Climate Models. In ACM SIGGRAPH 2020 Talks (SIGGRAPH ’20). Association for Computing Machinery, New York, NY, USA, Article 20, 1–2. https://doi.org/10.1145/3388767.3407354.

Michael Quinton, Iain McGregor, and David Benyon. 2020. Sonification of an exoplanetary atmosphere. In Proceedings of the 15th International Audio Mostly Conference (AM ’20). Association for Computing Machinery, New York, NY, USA, 191–198. https://doi.org/10.1145/3411109.3411117.

Hatem Ltaief, Dalal Sukkari, Oliver Guyon, and David Keyes. 2018. Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System. In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC ’18). Association for Computing Machinery, New York, NY, USA, Article 1, 1–10. https://doi.org/10.1145/3218176.3218225.

Yuyan Wang. 2021. The Identification of Transiting Exoplanet Candidates Based on Convolutional Neural Network. In Proceedings of the 2020 2nd International Conference on Big Data and Artificial Intelligence (ISBDAI ’20). Association for Computing Machinery, New York, NY, USA, 5–8. https://doi.org/10.1145/3436286.3436288.

A. Malik, B. P. Moster, and C. Obermeier, ”Exoplanet detection using machine learning,” Monthly Notices of the Royal Astronomical Society, https://doi.org/10.48550/arXiv.2011.14135.

Shallue, C.J., & Vanderburg, A.M. (2017). Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90. The Astronomical Journal, 155. https://doi.org/10.48550/arXiv.1712.05044.

Jin, Y., Yang, L., & Chiang, C. (2022). Identifying Exoplanets with Machine Learning Methods: A Preliminary Study. ArXiv, abs/2204.00721. https://doi.org/10.48550/arXiv.1907.11109.

Chaushev, A., Raynard, L., Goad, M.R., Eigmuller, P., Armstrong, ¨ D.J., Briegal, J.T., Burleigh, M.R., Casewell, S.L., Gill, S., Jenkins, J.S., Nielsen, L.D., Watson, C.A., West, R.G., Wheatley, P.J., Udry, S., & Vines, J.I. (2019). Classifying exoplanet candidates with convolutional neural networks: application to the Next Generation Transit Survey. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.48550/arXiv.2204.00721.

J. P. Glaser, S. L. W. McMillan, A. M. Geller, J. D. Thornton, and M. R. Giovinazzi, “Tycho: Realistically Simulating Exoplanets within Stellar Clusters. I. Improving the Monte Carlo Approach,” The Astronomical Journal, vol. 160, no. 3, p. 126, Aug. 2020, doi: https://doi.org/10.3847/1538-3881/aba2ea.

Downloads

Posted

2024-03-18