Preprint / Version 1

Neutrinos: Physics Beyond the Standard Model Through Multi Messenger Astronomy and Lessons from IceCube

##article.authors##

  • Avni Iyer None

DOI:

https://doi.org/10.58445/rars.960

Keywords:

Physics and Astronomy, Atomic, Molecular and Optical Physics, Nuclear and Particle Physics, IceCube, Multi Messenger Astrophysics, Blazar, Neutrino, TXS 0506 056

Abstract

Neutrinos, a class of  nearly massless elementary particles that interact with only the weak nuclear and gravitational forces, possess a remarkable ability to traverse enormous distances without interference. Originating from processes like nuclear fusion in stars, supernova explosions, supermassive blackholes and radioactive decay, neutrinos are unique in their capacity to journey through space largely undisturbed. This characteristic helps answer some of the most fundamental questions about the universe such as the inner workings of astrophysical bodies and potentially the matter-antimatter asymmetry in the universe. By reviewing data from IceCube, the world's largest optical Cherenkov telescope, this paper presents a critical evaluation of the information from a major identified source of astrophysical neutrinos: blazars. This paper also evaluates and discusses the importance of multi messenger astronomy and the need to go beyond the standard model to understand the complex nature of neutrino emissions, antineutrino characteristics, and blazars.

References

Sundermier, A. Symmetry magazine. Game changing neutrino experiments page. https://www.symmetrymagazine.org/article/game-changing-neutrino-experiments (published 2018-05-24).

Harris, D. US Department of Energy Office of Science (Fermilab), DOE explains Neutrinos page. https://www.energy.gov/science/doe-explainsneutrinos. (published 2020-06)

Aartsen, M.G.; Abbasi, R.; et al (The IceCube Collaboration). Detection of a particle shower at the Glashow resonance with IceCube. Nature. 2021, 591, 220-224 (2021). DOI: 10.1038/s41586-021-03256-1

Piergrossi, J. Symmetry magazine. Neutrinos, the Standard Model misfits. https://www.symmetrymagazine.org/article/february-2013/neutrinos-the-standard-model-misfits/ (published 2013-02-13)

Reissman, H. Ideas.TED.com page, Could the neutrino hold the answers to some of the universe’s big questions. https://ideas.ted.com/could-the-neutrino-hold-the-answers-to-some-of-the-universes-big-questions/ (published 2017-05-05)

Fermi National Accelerator Laboratory, Cosmic neutrinos page https://neutrinos.fnal.gov/sources/cosmic-neutrinos (published 2020-05

Baird. C West Texas A&M Science Questions with Surprising Answers page. How does a black hole give off light? https://www.wtamu.edu/~cbaird/sq/2016/03/29/how-does-a-black-hole-give-off-light/ (published 2016-03-29)

Liu, R.Y. ; Wang, K. ; Xue, R. ; Taylor, A.M.; Wang, X.Y.; Li, Z. ; Yan, H. Hadronuclear interpretation of a high-energy neutrino event coincident with a blazar flare. 99, Physical Review D 99, 063008 (2019), DOI: 10.1103/PhysRevD.99.063008.

Mushotzky, R. University of Maryland, Dept. Of Astronomy page. https://www.astro.umd.edu/~richard/ASTR480/Beckmann_Longair_Radiation3.pdf (published 2019-08-28, accessed 2023-07-09)

NIST.gov Sensor Science Division page. What is synchrotron radiation? https://www.nist.gov/pml/sensor-science/what-synchrotron-radiation. (published 03-02-2010, Updated 2021-06-02)

Aartsen, M.G.; Abbasi, R. et al (The IceCube Collaboration). Detection of a particle shower at the Glashow resonance with IceCube. Nature. 2021, 591, 220-224 (2021). DOI: 10.1038/s41586-021-03256-1

University of Wisconsin-Madison, ICECUBE Neutrino Observatory page. https://icecube.wisc.edu/science/icecube/ (accessed 2023-07-13).

Strassler, M. IceCube: A Giant Frozen Neutrino Catcher page. https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/how-one-detects-neutrinos/icecube-a-giant-frozen-neutrino-catcher/. (published 2013)

Tillman, N.T.; Space.com magazine page. IceCube: Unlocking the Secrets of Cosmic Rays. https://www.space.com/41170-icecube-neutrino-observatory.html. (published 2018-07-14)

The IceCube Collaboration, Fermi-LAT, MAGIC, et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 07-13-2018, Vol 361, Issue 6398 DOI: 10.1126/science.aat1378

Gao, S.; Fedynitch, A.; Winter, W.; Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nature. 2019-5-10. arXiv:1807.04275v3 DOI: 10.1038/s41550-018-0610-1

Kowalski, M. Status of High-Energy Neutrino Astronomy. Journal of Physics: Conference. Series. 632 012039 2014-10. DOI: 10.1088/1742-6596/632/1/012039

Righi, C.; Tavecchio, F.; Inoue, S. Neutrino emission from BL Lac objects: the role of radiatively inefficient accretion flows. Monthly Notices of the Royal Astronomical Society: Letters, Volume 483, Issue 1. 2019-02. Pages L127–L131. DOI: 10.1093/mnrasl/sly231

Franckowiak, A; Garrappa, S. et al. Patterns in the Multiwavelength Behavior of Candidate Neutrino Blazars. The Astrophysical Journal, The American Astronomical Society, 2020-04-28. DOI 10.3847/1538-4357/ab8307

Plavin, A.V.; Burenin,R.A.; Kovalev, Y.Y.; Lutovinov, A.A.; Starobinsky, A.A.; Troitsky, S.V.; Zakharov, E.I. Hard X-ray emission from blazars associated with high-energy neutrinos. ArXiv INR-TH-2023-007, 2023 September, DOI: 10.48550/arXiv.2306.00960

Garrappa, S. et al. Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube. The AstroPhysical Journal. Volume 880, Number 2. 2019-07-31. DOI 10.3847/1538-4357/ab2ada

The IceCube-Gen2 Collaboration, IceCube-Gen2: The Window to the Extreme Universe. Journal of Physics, G48 (2021) 6, 0605012020-08-10. 2021-04-29. arXiv:2008.04323v1 [astro-ph.HE]. DOI: 10.1088/1361-6471/abbd48

Stathopoulos, S.I.; Petropoulou, M.; Giommi, P.; Vasilopoulos, G.; Padovani, P. ;Mastichiadis, A. High-energy neutrinos from X-rays flares of blazars frequently observed by the Swift X-ray Telescope. Monthly Notices of the Royal Astronomical Society, Volume 510, Issue 3, Pages 4063–4079, March 2022 DOI: 10.1093/mnras/stab3404.

Liu, L.; Ningqiang, S.;, and Vincent, A.C. Probing neutrino production in high-energy astrophysical neutrino sources with the Glashow resonance. American Physical Society Journal. Phys. Rev. D 108, 043022. 2023-07-24. DOI: 10.1103/PhysRevD.108.043022

Cates, G.; Wojtsekhowski, B.; Carter, K. US DoE Jefferson Lab Page. Quarks Pair Up in Protons (and Neutrons). https://www.jlab.org/quarks-pair-protons-and-neutrons. (published: n.a., accessed 2023-10-20)

University of Alabama, Department of Physics & Astronomy page. Antimatter Neutrino from Space Distinguished from Normal Matter Neutrino for First Time Using Unique Process. https://physics.ua.edu/2021/03/10/antimatter-neutrino-from-space-distinguished-from-normal-matter-neutrino-for-first-time-using-unique-process/ (published: 2021-03-10)

Chatterjee, A.; Devi, M.M.; Ghosh, M; Moharana, R.; Raut, S.K. Probing CP violation with the three years ultra-high energy neutrinos from IceCube. Rev. D 90, 073003 (2014). American Physical Society, Phys. Rev. D 90, 073003. DOI: 10.1103/PhysRevD.90.073003

Downloads

Posted

2024-02-17

Categories