In-silico Design and Validation of Novel Lactate Dehydrogenase Inhibitors for Cancer Therapy
DOI:
https://doi.org/10.58445/rars.806Keywords:
in silico, drug design, lactate dehydrogenase, LDH, cancer, therapy, Warburg effect, drug development, ADMET, pharmacophoreAbstract
Lactate is an important metabolite in both cancer and non-cancer cells. A class of enzymes known as lactate dehydrogenases, LDHs, allows cancer cells to transform excess pyruvate into lactate in anaerobic respiration, and then reconvert lactate into pyruvate for ATP production. Lactate has been shown to mediate immunosuppression and metabolic rewiring in tumors, accelerating tumor progression. Thus, developing new effective therapeutics against the action of LDH is critical to choking the Warburg effect in various types of cancer. We use the DepMap portal to identify LDH isoforms LDHA and LDHB as potential targets for cancer therapy and show that the LDHA target has a high predictive power for prognosis across many different cancers. We then use in silico techniques, such as virtual screening, pharmacophore modeling, protein structure analysis, and inhibitor selectivity analysis to design novel and effective small molecules that can inhibit both LDHA and LDHB, potentially addressing lactate-mediated immunosuppression and tumorigenesis. This study pushes forward an in-silico-centered pre-clinical ligand-based drug discovery pipeline to create optimal results in short amounts of time obviating the need for traditional expensive trial-and-error methods.
References
Jerry J. Zimmerman, Amélie von Saint André-von Arnim, Jerry McLaughlin, Chapter 74 - Cellular Respiration, Editor(s): Bradley P. Fuhrman, Jerry J. Zimmerman, Pediatric Critical Care (Fourth Edition), Mosby, 2011, Pages 1058-1072, ISBN 9780323073073, https://doi.org/10.1016/B978-0-323-07307-3.10074-6.
Warburg O, Wind F, Negelein E. THE METABOLISM OF TUMORS IN THE BODY. J Gen Physiol. 1927 Mar 7;8(6):519-30. doi: 10.1085/jgp.8.6.519. PMID: 19872213; PMCID: PMC2140820.
Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020 Jul;2(7):566-571. doi: 10.1038/s42255-020-0243-4. Epub 2020 Jul 20. PMID: 32694798; PMCID: PMC7983055.
Zaheed Husain, Yannu Huang, Pankaj Seth, Vikas P. Sukhatme; Tumor-Derived Lactate Modifies Antitumor Immune Response: Effect on Myeloid-Derived Suppressor Cells and NK Cells. J Immunol 1 August 2013; 191 (3): 1486–1495. https://doi.org/10.4049/jimmunol.1202702
Forkasiewicz, A., Dorociak, M., Stach, K. et al. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell Mol Biol Lett 25, 35 (2020). https://doi.org/10.1186/s11658-020-00228-7
Ždralević M, Brand A, Di Ianni L, Dettmer K, Reinders J, Singer K, Peter K, Schnell A, Bruss C, Decking SM, Koehl G, Felipe-Abrio B, Durivault J, Bayer P, Evangelista M, O'Brien T, Oefner PJ, Renner K, Pouysségur J, Kreutz M. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism. J Biol Chem. 2018 Oct 12;293(41):15947-15961. doi: 10.1074/jbc.RA118.004180. Epub 2018 Aug 29. PMID: 30158244; PMCID: PMC6187639.
Gaurav Pathria, David A Scott, Yongmei Feng, Joo Sang Lee, Yu Fujita, Gao Zhang, Avinash D Sahu, Eytan Ruppin, Meenhard Herlyn, Andrei L Osterman, Ze'ev A Ronai. Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. The EMBO Journal (2018) 37: e99735.
Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018 Dec;7(12):6124-6136. doi: 10.1002/cam4.1820. Epub 2018 Nov 6. PMID: 30403008; PMCID: PMC6308051.
Urbańska K, Orzechowski A. Unappreciated Role of LDHA and LDHB to Control Apoptosis and Autophagy in Tumor Cells. Int J Mol Sci. 2019 Apr 27;20(9):2085. doi: 10.3390/ijms20092085. PMID: 31035592; PMCID: PMC6539221.
Semenza, G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721–732 (2003). https://doi.org/10.1038/nrc1187
Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996 Dec 20;271(51):32529-37. doi: 10.1074/jbc.271.51.32529. PMID: 8955077.
Goetzman ES, Prochownik EV. The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic Tissues. Front Endocrinol (Lausanne). 2018 Apr 12;9:129. doi: 10.3389/fendo.2018.00129. PMID: 29706933; PMCID: PMC5907532.
Madden, S.K., de Araujo, A.D., Gerhardt, M. et al. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 20, 3 (2021). https://doi.org/10.1186/s12943-020-01291-6
Ma R, Li X, Gong S, Ge X, Zhu T, Ge X, Weng L, Tao Q, Guo J. Dual Roles of Lactate in EGFR-TKI-Resistant Lung Cancer by Targeting GPR81 and MCT1. J Oncol. 2022 Dec 12;2022:3425841. doi: 10.1155/2022/3425841. PMID: 36545125; PMCID: PMC9763017.
Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013 Sep;123(9):3685-92. doi: 10.1172/JCI69741. Epub 2013 Sep 3. PMID: 23999443; PMCID: PMC3754272.
Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P. Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta. 2016 Oct;1863(10):2481-97. doi: 10.1016/j.bbamcr.2016.03.013. Epub 2016 Mar 16. PMID: 26993058; PMCID: PMC4990061.
Brand A, et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metabolism. 2016 Nov 8;24(5):657-671. Doi: https://doi.org/10.1016/j.cmet.2016.08.011.
Petrella G, Ciufolini G, Vago R, Cicero DO. Urinary Metabolic Markers of Bladder Cancer: A Reflection of the Tumor or the Response of the Body? Metabolites. 2021 Oct 31;11(11):756. doi: 10.3390/metabo11110756. PMID: 34822414; PMCID: PMC8621503.
Pérez-Tomás R, Pérez-Guillén I. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers (Basel). 2020 Nov 3;12(11):3244. doi: 10.3390/cancers12113244. PMID: 33153193; PMCID: PMC7693872.
Nilov DK, Prokhorova EA, Švedas VK. Search for Human Lactate Dehydrogenase A Inhibitors Using Structure-Based Modeling. Acta Naturae. 2015 Apr-Jun;7(2):57-63. PMID: 26085945; PMCID: PMC4463413.
Adams MJ, Buehner M, Chandrasekhar K, Ford GC, Hackert ML, Liljas A, Rossmann MG, Smiley IE, Allison WS, Everse J, Kaplan NO, Taylor SS. Structure-function relationships in lactate dehydrogenase. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1968-72. doi: 10.1073/pnas.70.7.1968. PMID: 4146647; PMCID: PMC433644.
Oshima N et al., 2020, Cell Reports 30, 1798–1810 February 11, 2020 https://doi.org/10.1016/j.celrep.2020.01.039
DepMap, Broad (2023): This DepMap release contains data from CRISPR knockout screens from project Achilles, as well as genomic characterization data from the CCLE project. For more information, please see README.txt.. figshare. Dataset. https://doi.org/10.6084/m9.figshare.22765112.v2
Robin M. Meyers, Jordan G. Bryan, James M. McFarland, Barbara A. Weir, ... David E. Root, William C. Hahn, Aviad Tsherniak. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nature Genetics 2017 October 49:1779-1784. doi:10.1038/ng.3984
Dempster, J. M., Boyle, I., Vazquez, F., Root, D., Boehm, J. S., Hahn, W. C., Tsherniak, A., & McFarland, J. M. (2021). Chronos: a CRISPR cell population dynamics model. BioRxiv, 432728.
Pacini, C., Dempster, J. M., Boyle, I., Goncalves, E., Najgebauer, H., Karakoc, E., van der Meer, D., Barthorpe, A., Lightfoot, H., Jaaks, P., McFarland, J. M., Garnett, M. J., Tsherniak, A., & Iorio, F. (2021) Integrated cross-study datasets of genetic dependencies in cancer. Nature Commmunications, 12-1661.
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102. doi: 10.1093/nar/gkx247. PMID: 28407145; PMCID: PMC5570223.
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-50. doi: 10.1007/978-1-4939-2269-7_19. PMID: 25618350.
Murail S, de Vries S, Rey J, Moroy G & Tufféry P. SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking. Frontiers in Molecular Biosciences (2021). https://doi.org/10.3389/fmolb.2021.716466
Tufféry P & Murail S. Docking_py, a python library for ligand protein docking. Zenodo (2020), http://doi.org/10.5281/zenodo.4506970.
BIOVIA, Dassault Systèmes, Discovery Studio, San Diego: Dassault Systèmes, 2023.
Polishchuk, P. CReM: chemically reasonable mutations framework for structure generation. J Cheminform 12, 28 (2020). https://doi.org/10.1186/s13321-020-00431-w
J. Chem. Inf. Model. 2020, 60, 12, 6074–6080. Publication Date: November 9, 2020. https://doi.org/10.1021/acs.jcim.0c00792
Sunseri J, Koes DR. Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 2016 Jul 8;44(W1):W442-8. doi: 10.1093/nar/gkw287. Epub 2016 Apr 19. PMID: 27095195; PMCID: PMC4987880.
Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model. 2013 Aug 26;53(8):1893-904. doi: 10.1021/ci300604z. Epub 2013 Feb 12. PMID: 23379370; PMCID: PMC3726561.
Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7, 42717 (2017). https://doi.org/10.1038/srep42717
Priyanka Banerjee, Andreas O Eckert, Anna K Schrey, Robert Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Research, Volume 46, Issue W1, 2 July 2018, Pages W257–W263, https://doi.org/10.1093/nar/gky318
Frontiers | Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets (frontiersin.org)
Malgorzata N. Drwal, Priyanka Banerjee, Mathias Dunkel, Martin R. Wettig, Robert Preissner, ProTox: a web server for the in silico prediction of rodent oral toxicity, Nucleic Acids Research, Volume 42, Issue W1, 1 July 2014, Pages W53–W58, https://doi.org/10.1093/nar/gku401
Vidugiriene J, Leippe D, Sobol M, Vidugiris G, Zhou W, Meisenheimer P, Gautam P, Wennerberg K, Cali JJ. Bioluminescent cell-based NAD(P)/NAD(P)H assays for rapid dinucleotide measurement and inhibitor screening. Assay Drug Dev Technol. 2014 Nov-Dec;12(9-10):514-26. doi: 10.1089/adt.2014.605. PMID: 25506801; PMCID: PMC4270152.
ACS Omega 2020, 5, 22, 13034–13041. Publication Date:May 27, 2020. https://doi.org/10.1021/acsomega.0c00715
Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J. & Kirton, S. B. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 52, 420–428 (2012).
David Gfeller, Olivier Michielin, Vincent Zoete, Shaping the interaction landscape of bioactive molecules, Bioinformatics, Volume 29, Issue 23, December 2013, Pages 3073–3079, https://doi.org/10.1093/bioinformatics/btt540
Antoine Daina, Olivier Michielin, Vincent Zoete, SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Research, Volume 47, Issue W1, 02 July 2019, Pages W357–W364, https://doi.org/10.1093/nar/gkz382
Downloads
Posted
Categories
License
Copyright (c) 2023 Anant Asthana
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.