Assessment of carbon capture techniques and their carbon sequestration potential, technical characteristics, and cost.
DOI:
https://doi.org/10.58445/rars.770Keywords:
DAC, Carbon Capture, Carbon Sequestration, biochar, Enhanced Rock WeatheringAbstract
The scientific community has declared a need for urgent action on climate change to limit global warming to 1.5℃. To achieve this goal, carbon capture has been identified as a potential critical method. Currently, carbon capture facilities sequester around 45 megatonnes of CO2 a year. The International Energy Agency estimates that around 1.2 gigatonnes of CO2 must be removed by the year 2030 to stabilize the rate of global warming. This review compares the technical aspects, costs, and carbon sequestration potential of three carbon capture methods: direct air capture, biochar, and enhanced rock weathering. While direct air capture is the most developed and most reliable in sequestration ability of the three, it is more expensive than enhanced rock weathering and biochar, which are cheaper but more variable in sequestration. For these reasons, DAC is the frontrunner of carbon capture and holds the most potential in helping reach the 1.2Gt Target.
References
Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2016). Insight into biochar properties and its cost analysis. Biomass and Bioenergy, 84, 76–86. https://doi.org/10.1016/j.biombioe.2015.11.002
Baus, L., & Nehr, S. (2022). Potentials and limitations of direct air capturing in the built environment. Building and Environment, 208, 108629. https://doi.org/10.1016/j.buildenv.2021.108629
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., Sarkar, B., Andrews, M. G., James, R. H., Pearce, C. R., Mercure, J.-F., Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M., Koh, L., Quegan, S., Pidgeon, N. F., Janssens, I. A., … Banwart, S. A. (2020). Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 583(7815), 242–248. https://doi.org/10.1038/s41586-020-2448-9
Ben Salem, I., El Gamal, M., Sharma, M., Hameedi, S., & Howari, F. M. (2021). Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes. Journal of Environmental Management, 299, 113644. https://doi.org/10.1016/j.jenvman.2021.113644
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): The way forward. Energy & Environmental Science, 11(5), 1062–1176. https://doi.org/10.1039/C7EE02342A
Carbon Capture, utilisation and Storage - Energy System - IEA. (n.d.). IEA. https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage#tracking
Climate change: global temperature. (2023, January 18). NOAA Climate.gov. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
Change, N. G. C. (n.d.). Carbon Dioxide Concentration | NASA Global Climate Change. Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/vital-signs/carbon-dioxide/
De Oliveira Garcia, W., Amann, T., Hartmann, J., Karstens, K., Popp, A., Boysen, L. R., Smith, P., & Goll, D. (2020). Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 17(7), 2107–2133. https://doi.org/10.5194/bg-17-2107-2020
Dickinson, D., Balduccio, L., Buysse, J., Ronsse, F., Van Huylenbroeck, G., & Prins, W. (2015). Cost‐benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy, 7(4), 850–864. https://doi.org/10.1111/gcbb.12180
Direct Air Capture - Energy System - IEA. (n.d.). IEA. https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/direct-air-capture
Fisher, B. J. (2023, May 20). Can ‘enhanced rock weathering’ help combat climate change? BBC News. https://www.bbc.com/news/science-environment-65648361
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. L. V., Wilcox, J., Del Mar Zamora Dominguez, M., & Minx, J. C. (2018). Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 13(6), 063002. https://doi.org/10.1088/1748-9326/aabf9f
Gigajoules - how gas is measured. (n.d.). www.fortisbc.com. https://www.fortisbc.com/about-us/facilities-operations-and-energy-information/how-gas-is-measured
Haug, T. A., Kleiv, R. A., & Munz, I. A. (2010). Investigating dissolution of mechanically activated olivine for carbonation purposes. Applied Geochemistry, 25(10), 1547–1563. https://doi.org/10.1016/j.apgeochem.2010.08.005
International Biochar Initiative. (2023, January 18). FAQs - International Biochar Initiative. https://biochar-international.org/about-biochar/faqs/
Ipcc. (2022). Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157940
Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1492), 815–830. https://doi.org/10.1098/rstb.2007.2185
Leonzio, G., Fennell, P. S., & Shah, N. (2022). A Comparative Study of Different Sorbents in the Context of Direct Air Capture (DAC): Evaluation of Key Performance Indicators and Comparisons. Applied Sciences, 12(5), 2618. https://doi.org/10.3390/app12052618
Leonzio, G., Mwabonje, O., Fennell, P. S., & Shah, N. (2022). Environmental performance of different sorbents used for direct air capture. Sustainable Production and Consumption, 32, 101–111. https://doi.org/10.1016/j.spc.2022.04.004
Mašek, O., Buss, W., Roy-Poirier, A., Lowe, W., Peters, C., Brownsort, P., Mignard, D., Pritchard, C., & Sohi, S. (2018). Consistency of biochar properties over time and production scales: A characterisation of standard materials. Journal of Analytical and Applied Pyrolysis, 132, 200–210. https://doi.org/10.1016/j.jaap.2018.02.020
Mašek, O., Buss, W., & Sohi, S. (2018). Standard Biochar Materials. Environmental Science & Technology, 52(17), 9543–9544. https://doi.org/10.1021/acs.est.8b04053
McQueen, N., Gomes, K. V., McCormick, C., Blumanthal, K., Pisciotta, M., & Wilcox, J. (2021). A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future. Progress in Energy, 3(3), 032001. https://doi.org/10.1088/2516-1083/abf1ce
McQueen, N., Psarras, P., Pilorgé, H., Liguori, S., He, J., Yuan, M., Woodall, C. M., Kian, K., Pierpoint, L., Jurewicz, J., Lucas, J. M., Jacobson, R., Deich, N., & Wilcox, J. (2020). Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States. Environmental Science & Technology, 54(12), 7542–7551. https://doi.org/10.1021/acs.est.0c00476
Ozkan, M., Nayak, S. P., Ruiz, A. D., & Jiang, W. (2022). Current status and pillars of direct air capture technologies. iScience, 25(4), 103990. https://doi.org/10.1016/j.isci.2022.103990
Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J.-K., Koutsospyros, A., & Moon, D. H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52–64. https://doi.org/10.1016/j.jenvman.2018.12.085
Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M., Kyratsi, T., & Oelkers, E. H. (2018). Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry, 91, 197–207. https://doi.org/10.1016/j.apgeochem.2017.11.001
Sabatino, F., Grimm, A., Gallucci, F., Van Sint Annaland, M., Kramer, G. J., & Gazzani, M. (2021). A comparative energy and costs assessment and optimization for direct air capture technologies. Joule, 5(8), 2047–2076. https://doi.org/10.1016/j.joule.2021.05.023
Sadasivam, B. Y., & Reddy, K. R. (2015). Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars. Journal of Environmental Management, 158, 11–23. https://doi.org/10.1016/j.jenvman.2015.04.032
Shackley, S., Hammond, J., Gaunt, J., & Ibarrola, R. (2011). The feasibility and costs of biochar deployment in the UK. Carbon Management, 2(3), 335–356. https://doi.org/10.4155/cmt.11.22
Strefler, J., Amann, T., Bauer, N., Kriegler, E., & Hartmann, J. (2018). Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters, 13(3), 034010. https://doi.org/10.1088/1748-9326/aaa9c4
Tahmasebi, P., Kamrava, S., Bai, T., & Sahimi, M. (2020). Machine learning in geo- and environmental sciences: From small to large scale. Advances in Water Resources, 142, 103619. https://doi.org/10.1016/j.advwatres.2020.103619
Tam, T., & Bhatnagar, A. (2016). High-performance ballistic fibers and tapes. In Lightweight Ballistic Composites (pp. 1–39). Elsevier. https://doi.org/10.1016/B978-0-08-100406-7.00001-5
U.S. Department of Energy. (2023, June 9). Carbon Management - Pathways to commercial liftoff. Pathways to Commercial Liftoff. https://liftoff.energy.gov/carbon-management/
Xie, T., Sadasivam, B. Y., Reddy, K. R., Wang, C., & Spokas, K. (2016). Review of the Effects of Biochar Amendment on Soil Properties and Carbon Sequestration. Journal of Hazardous, Toxic, and Radioactive Waste, 20(1), 04015013. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000293
Yargicoglu, E. N., Sadasivam, B. Y., Reddy, K. R., & Spokas, K. (2015). Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 256–268. https://doi.org/10.1016/j.wasman.2014.10.029
Downloads
Posted
Categories
License
Copyright (c) 2023 Connor Yu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.