Preprint / Version 1

Differences in Nicotine Action and Dopamine Function During Nicotine Withdrawal

##article.authors##

  • Mehul Anand Monta Vista High School
  • Kyle Ploense

DOI:

https://doi.org/10.58445/rars.646

Keywords:

Nicotine, Dopamine, Addiction, neurobiology, smoking, nicotine withdrawal

Abstract

Nicotine addiction is a significant public health issue, as it greatly raises the risk of chronic health issues such as lung cancer and cardiovascular disease, with adolescents being especially susceptible to addiction. Nicotine is the main active component found in tobacco products and works by binding to nicotinic acetylcholine receptors (nAChRs). This leads to the release of dopamine, a neurotransmitter that plays a key role in reinforcing and maintaining the addictive properties of nicotine by triggering the brain’s reward pathway. In this review I will be looking at differences in nicotine action and dopamine function via dopamine transporters and dopamine-metabolizing enzymes in humans and animals, which play a pivotal role in the reuptake and degradation of dopamine. These are key factors in the regulation of dopamine levels within the brain, influencing the manifestation of nicotine withdrawal symptoms upon cessation of nicotine use that draw people back towards use of the drug. 

References

Park-Lee, E. et al. Tobacco Product Use Among Middle and High School Students - United States, 2022. MMWR Morb Mortal Wkly Rep 71, 1429-1435 (2022). https://doi.org/10.15585/mmwr.mm7145a1

St Claire, S. et al. Lung health, tobacco, and related products: gaps, challenges, new threats, and suggested research. Am J Physiol Lung Cell Mol Physiol 318, L1004-l1007 (2020). https://doi.org/10.1152/ajplung.00101.2020

Schuller, H. M. The impact of smoking and the influence of other factors on lung cancer. Expert Review of Respiratory Medicine 13, 761-769 (2019). https://doi.org/10.1080/17476348.2019.1645010

Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223-1249 (2020). https://doi.org/10.1016/s0140-6736(20)30752-2

Goodchild, M., Nargis, N. & Tursan d'Espaignet, E. Global economic cost of smoking-attributable diseases. Tob Control 27, 58-64 (2018). https://doi.org/10.1136/tobaccocontrol-2016-053305

Hogg, R. C., Raggenbass, M. & Bertrand, D. in Reviews of Physiology, Biochemistry and Pharmacology 1-46 (Springer Berlin Heidelberg, 2003).

Albuquerque, E. X., Pereira, E. F. R., Alkondon, M. & Rogers, S. W. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiological Reviews 89, 73-120 (2009). https://doi.org/10.1152/physrev.00015.2008

Wise, R. A. & Robble, M. A. Dopamine and Addiction. Annual Review of Psychology 71, 79-106 (2020). https://doi.org/10.1146/annurev-psych-010418-103337

Markou, A. Review. Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 363, 3159-3168 (2008). https://doi.org/10.1098/rstb.2008.0095

Chaudhri, N. et al. Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology 184, 353-366 (2006). https://doi.org/10.1007/s00213-005-0178-1

Chellian, R. et al. Rodent models for nicotine withdrawal. J Psychopharmacol 35, 1169-1187 (2021). https://doi.org/10.1177/02698811211005629

Changeux, J.-P. & Taly, A. Nicotinic receptors, allosteric proteins and medicine. Trends in Molecular Medicine 14, 93-102 (2008). https://doi.org/10.1016/j.molmed.2008.01.001

Fehr, C. et al. Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse. Am J Psychiatry 165, 507-514 (2008). https://doi.org/10.1176/appi.ajp.2007.07020352

Robinson, J. D. et al. Evaluating the temporal relationships between withdrawal symptoms and smoking relapse. Psychol Addict Behav 33, 105-116 (2019). https://doi.org/10.1037/adb0000434

Rasmussen, S., Horkan, K. H. & Kotler, M. Pharmacokinetic Evaluation of Two Nicotine Patches in Smokers. Clin Pharmacol Drug Dev 7, 506-512 (2018). https://doi.org/10.1002/cpdd.431

Khan, S. R. et al. Bupropion Hydrochloride. Profiles Drug Subst Excip Relat Methodol 41, 1-30 (2016). https://doi.org/10.1016/bs.podrm.2015.12.001

Potts, L. A. & Garwood, C. L. Varenicline: the newest agent for smoking cessation. Am J Health Syst Pharm 64, 1381-1384 (2007). https://doi.org/10.2146/ajhp060428

Thrul, J., Stemmler, M., Goecke, M. & Bühler, A. Are you in or out? Recruitment of adolescent smokers into a behavioral smoking cessation intervention. Addict Behav 45, 150-155 (2015). https://doi.org/10.1016/j.addbeh.2015.01.030

Xu, L., Nan, J. & Lan, Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 14, 37 (2020). https://doi.org/10.3389/fncir.2020.00037

Pontieri, F. E., Tanda, G., Orzi, F. & Chiara, G. D. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382, 255-257 (1996). https://doi.org/10.1038/382255a0

Kroemer, N. B. et al. Functional Connectivity of the Nucleus Accumbens and Changes in Appetite in Patients With Depression. JAMA Psychiatry 79, 993-1003 (2022). https://doi.org/10.1001/jamapsychiatry.2022.2464

Yang, H. et al. Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations. Neuron 97, 434-449.e434 (2018). https://doi.org/10.1016/j.neuron.2017.12.022

Zhou, K. et al. Reward and aversion processing by input-defined parallel nucleus accumbens circuits in mice. Nat Commun 13, 6244 (2022). https://doi.org/10.1038/s41467-022-33843-3

Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535-1551 (2014). https://doi.org/10.1016/j.cell.2014.05.017

Nguyen, C. et al. Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron 109, 2604-2615.e2609 (2021). https://doi.org/10.1016/j.neuron.2021.06.013

Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532-536 (2013). https://doi.org/10.1038/nature11713

Senba, E. & Kami, K. A new aspect of chronic pain as a lifestyle-related disease. Neurobiol Pain 1, 6-15 (2017). https://doi.org/10.1016/j.ynpai.2017.04.003

Goriounova, N. A. & Mansvelder, H. D. Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function. Cold Spring Harb Perspect Med 2, a012120 (2012). https://doi.org/10.1101/cshperspect.a012120

Young, J. W. et al. Nicotine Improves Sustained Attention in Mice: Evidence for Involvement of the α7 Nicotinic Acetylcholine Receptor. Neuropsychopharmacology 29, 891-900 (2004). https://doi.org/10.1038/sj.npp.1300393

Poorthuis, R. B., Goriounova, N. A., Couey, J. J. & Mansvelder, H. D. Nicotinic actions on neuronal networks for cognition: General principles and long-term consequences. Biochemical Pharmacology 78, 668-676 (2009). https://doi.org/https://doi.org/10.1016/j.bcp.2009.04.031

Potter, A. S. & Newhouse, P. A. Acute nicotine improves cognitive deficits in young adults with attention-deficit/hyperactivity disorder. Pharmacol Biochem Behav 88, 407-417 (2008). https://doi.org/10.1016/j.pbb.2007.09.014

Bamford, I. J. & Bamford, N. S. The Striatum's Role in Executing Rational and Irrational Economic Behaviors. Neuroscientist 25, 475-490 (2019). https://doi.org/10.1177/1073858418824256

Prager, E. M. & Plotkin, J. L. Compartmental function and modulation of the striatum. J Neurosci Res 97, 1503-1514 (2019). https://doi.org/10.1002/jnr.24522

Chen, Y. H. et al. Differences in Nicotine Encoding Dopamine Release between the Striatum and Shell Portion of the Nucleus Accumbens. Cell Transplant 28, 248-261 (2019). https://doi.org/10.1177/0963689718775382

Licheri, V., Eckernäs, D., Bergquist, F., Ericson, M. & Adermark, L. Nicotine-induced neuroplasticity in striatum is subregion-specific and reversed by motor training on the rotarod. Addict Biol 25, e12757 (2020). https://doi.org/10.1111/adb.12757

Licheri, V. et al. Complex Control of Striatal Neurotransmission by Nicotinic Acetylcholine Receptors via Excitatory Inputs onto Medium Spiny Neurons. J Neurosci 38, 6597-6607 (2018). https://doi.org/10.1523/jneurosci.0071-18.2018

Tatu, L. & Vuillier, F. Structure and vascularization of the human hippocampus. Front Neurol Neurosci 34, 18-25 (2014). https://doi.org/10.1159/000356440

Kutlu, M. G. & Gould, T. J. Nicotinic receptors, memory, and hippocampus. Curr Top Behav Neurosci 23, 137-163 (2015). https://doi.org/10.1007/978-3-319-13665-3_6

Ge, S. & Dani, J. A. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci 25, 6084-6091 (2005). https://doi.org/10.1523/jneurosci.0542-05.2005

Damborsky, J. C., Griffith, W. H. & Winzer-Serhan, U. H. Neonatal nicotine exposure increases excitatory synaptic transmission and attenuates nicotine-stimulated GABA release in the adult rat hippocampus. Neuropharmacology 88, 187-198 (2015). https://doi.org/10.1016/j.neuropharm.2014.06.010

Tanner, J. A., Chenoweth, M. J. & Tyndale, R. F. Pharmacogenetics of nicotine and associated smoking behaviors. Curr Top Behav Neurosci 23, 37-86 (2015). https://doi.org/10.1007/978-3-319-13665-3_3

Benowitz, N. L., Hukkanen, J. & Jacob, P., 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol, 29-60 (2009). https://doi.org/10.1007/978-3-540-69248-5_2

Rubinstein, M. L., Benowitz, N. L., Auerback, G. M. & Moscicki, A. B. Rate of nicotine metabolism and withdrawal symptoms in adolescent light smokers. Pediatrics 122, e643-647 (2008). https://doi.org/10.1542/peds.2007-3679

Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E. & Schettino, T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed Res Int 2013, 321213 (2013). https://doi.org/10.1155/2013/321213

Kimmey, B. A., Rupprecht, L. E., Hayes, M. R. & Schmidt, H. D. Donepezil, an acetylcholinesterase inhibitor, attenuates nicotine self-administration and reinstatement of nicotine seeking in rats. Addict Biol 19, 539-551 (2014). https://doi.org/10.1111/adb.12014

Ashare, R. L. et al. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers. Transl Psychiatry 6, e713 (2016). https://doi.org/10.1038/tp.2015.209

Hopkins, T. J., Rupprecht, L. E., Hayes, M. R., Blendy, J. A. & Schmidt, H. D. Galantamine, an acetylcholinesterase inhibitor and positive allosteric modulator of nicotinic acetylcholine receptors, attenuates nicotine taking and seeking in rats. Neuropsychopharmacology 37, 2310-2321 (2012). https://doi.org/10.1038/npp.2012.83

Corrigall, W. A., Franklin, K. B., Coen, K. M. & Clarke, P. B. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 107, 285-289 (1992). https://doi.org/10.1007/bf02245149

Lammel, S., Lim, B. K. & Malenka, R. C. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 Pt B, 351-359 (2014). https://doi.org/10.1016/j.neuropharm.2013.03.019

Laviolette, S. R. & van der Kooy, D. Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 8, 50-59, 59 (2003). https://doi.org/10.1038/sj.mp.4001197

Bruijnzeel, A. W. & Markou, A. Decreased sensitivity to the effects of dopamine D1-like, but not D2-like, receptor antagonism in the posterior hypothalamic region/anterior ventral tegmental area on brain reward function during chronic exposure to nicotine in rats. Brain Research 1058, 91-100 (2005). https://doi.org/https://doi.org/10.1016/j.brainres.2005.07.056

Sun, N. & Laviolette, S. R. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens. Neuropsychopharmacology 39, 2799-2815 (2014). https://doi.org/10.1038/npp.2014.130

Di Chiara, G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393, 295-314 (2000). https://doi.org/10.1016/s0014-2999(00)00122-9

Cadoni, C. & Di Chiara, G. Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. Eur J Pharmacol 387, R23-25 (2000). https://doi.org/10.1016/s0014-2999(99)00843-2

Carcoba, L. M., Flores, R. J., Natividad, L. A. & O'Dell, L. E. Amino acid modulation of dopamine in the nucleus accumbens mediates sex differences in nicotine withdrawal. Addict Biol 23, 1046-1054 (2018). https://doi.org/10.1111/adb.12556

Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162, 1403-1413 (2005). https://doi.org/10.1176/appi.ajp.162.8.1403

Bassareo, V., Tanda, G., Petromilli, P., Giua, C. & Di Chiara, G. Non-psychostimulant drugs of abuse and anxiogenic drugs activate with differential selectivity dopamine transmission in the nucleus accumbens and in the medial prefrontal cortex of the rat. Psychopharmacology (Berl) 124, 293-299 (1996). https://doi.org/10.1007/bf02247433

Gozen, O., Balkan, B., Yildirim, E., Koylu, E. O. & Pogun, S. The epigenetic effect of nicotine on dopamine D1 receptor expression in rat prefrontal cortex. Synapse 67, 545-552 (2013). https://doi.org/10.1002/syn.21659

Goutier, W., Lowry, J. P., McCreary, A. C. & O'Connor, J. J. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum. Neurochem Res 41, 945-950 (2016). https://doi.org/10.1007/s11064-015-1786-8

Tammimäki, A., Pietilä, K., Raattamaa, H. & Ahtee, L. Effect of quinpirole on striatal dopamine release and locomotor activity in nicotine-treated mice. Eur J Pharmacol 531, 118-125 (2006). https://doi.org/10.1016/j.ejphar.2005.12.027

Le Foll, B. et al. Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]-+-PHNO PET study in humans. Neuropsychopharmacology 39, 415-424 (2014). https://doi.org/10.1038/npp.2013.209

Nasehi, M., Mafi, F., Oryan, S., Nasri, S. & Zarrindast, M. R. The effects of dopaminergic drugs in the dorsal hippocampus of mice in the nicotine-induced anxiogenic-like response. Pharmacol Biochem Behav 98, 468-473 (2011). https://doi.org/10.1016/j.pbb.2011.02.011

Zarrindast, M. R. et al. The effects of dopaminergic drugs in the ventral hippocampus of rats in the nicotine-induced anxiogenic-like response. Neurosci Lett 475, 156-160 (2010). https://doi.org/10.1016/j.neulet.2010.03.069

Savchenko, A. et al. Dopamine Transporter Deficient Rodents: Perspectives and Limitations for Neuroscience. Biomolecules 13 (2023). https://doi.org/10.3390/biom13050806

Chmielowiec, J. et al. Methylation in the Promoter Region of the Dopamine Transporter DAT1 Gene in People Addicted to Nicotine. Int J Environ Res Public Health 19 (2022). https://doi.org/10.3390/ijerph19148602

Ohmoto, M., Takahashi, T., Kubota, Y., Kobayashi, S. & Mitsumoto, Y. Genetic influence of dopamine receptor, dopamine transporter, and nicotine metabolism on smoking cessation and nicotine dependence in a Japanese population. BMC Genet 15, 151 (2014). https://doi.org/10.1186/s12863-014-0151-2

Hadjiconstantinou, M., Duchemin, A. M., Zhang, H. & Neff, N. H. Enhanced dopamine transporter function in striatum during nicotine withdrawal. Synapse 65, 91-98 (2011). https://doi.org/10.1002/syn.20820

Li, S. et al. Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neurosci Lett 363, 29-32 (2004). https://doi.org/10.1016/j.neulet.2004.03.053

Kambeitz, J. et al. Nicotine-dopamine-transporter interactions during reward-based decision making. Eur Neuropsychopharmacol 26, 938-947 (2016). https://doi.org/10.1016/j.euroneuro.2016.03.011

Tan, Y. Y., Jenner, P. & Chen, S. D. Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson's Disease: Past, Present, and Future. J Parkinsons Dis 12, 477-493 (2022). https://doi.org/10.3233/jpd-212976

van Amsterdam, J., Talhout, R., Vleeming, W. & Opperhuizen, A. Contribution of monoamine oxidase (MAO) inhibition to tobacco and alcohol addiction. Life Sci 79, 1969-1973 (2006). https://doi.org/10.1016/j.lfs.2006.06.010

Malin, D. H. et al. Inhibition of monoamine oxidase isoforms modulates nicotine withdrawal syndrome in the rat. Life Sci 93, 448-453 (2013). https://doi.org/10.1016/j.lfs.2013.08.006

Tammimäki, A. E. & Männistö, P. T. Are genetic variants of COMT associated with addiction? Pharmacogenet Genomics 20, 717-741 (2010). https://doi.org/10.1097/FPC.0b013e328340bdf2

Herman, A. I., Jatlow, P. I., Gelernter, J., Listman, J. B. & Sofuoglu, M. COMT Val158Met modulates subjective responses to intravenous nicotine and cognitive performance in abstinent smokers. Pharmacogenomics J 13, 490-497 (2013). https://doi.org/10.1038/tpj.2013.1

De Ruyck, K. et al. Genetic variation in three candidate genes and nicotine dependence, withdrawal and smoking cessation in hospitalized patients. Pharmacogenomics 11, 1053-1063 (2010). https://doi.org/10.2217/pgs.10.75

McLaughlin, I., Dani, J. A. & De Biasi, M. Nicotine withdrawal. Curr Top Behav Neurosci 24, 99-123 (2015). https://doi.org/10.1007/978-3-319-13482-6_4

Picciotto, M. R., Addy, N. A., Mineur, Y. S. & Brunzell, D. H. It is not "either/or": activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 84, 329-342 (2008). https://doi.org/10.1016/j.pneurobio.2007.12.005

Pidoplichko, V. I., DeBiasi, M., Williams, J. T. & Dani, J. A. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390, 401-404 (1997). https://doi.org/10.1038/37120

Brody, A. L. et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63, 907-915 (2006). https://doi.org/10.1001/archpsyc.63.8.907

Fenster, C. P., Whitworth, T. L., Sheffield, E. B., Quick, M. W. & Lester, R. A. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 19, 4804-4814 (1999). https://doi.org/10.1523/jneurosci.19-12-04804.1999

Benwell, M. E. M., Balfour, D. J. K. & Anderson, J. M. Evidence that Tobacco Smoking Increases the Density of (−)-[3H]Nicotine Binding Sites in Human Brain. Journal of Neurochemistry 50, 1243-1247 (1988). https://doi.org/https://doi.org/10.1111/j.1471-4159.1988.tb10600.x

Wills, L. & Kenny, P. J. Addiction-related neuroadaptations following chronic nicotine exposure. Journal of Neurochemistry 157, 1652-1673 (2021). https://doi.org/https://doi.org/10.1111/jnc.15356

Govind, A. P., Walsh, H. & Green, W. N. Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms. J Neurosci 32, 2227-2238 (2012). https://doi.org/10.1523/jneurosci.5438-11.2012

Buisson, B. & Bertrand, D. Chronic Exposure to Nicotine Upregulates the Human α4β2 Nicotinic Acetylcholine Receptor Function. The Journal of Neuroscience 21, 1819-1829 (2001). https://doi.org/10.1523/jneurosci.21-06-01819.2001

Trauth, J. A., Seidler, F. J., McCook, E. C. & Slotkin, T. A. Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. Brain Res 851, 9-19 (1999). https://doi.org/10.1016/s0006-8993(99)01994-0

Mao, D., Perry, D. C., Yasuda, R. P., Wolfe, B. B. & Kellar, K. J. The α4β2α5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. Journal of Neurochemistry 104, 446-456 (2008). https://doi.org/https://doi.org/10.1111/j.1471-4159.2007.05011.x

Grieder, T. E. et al. Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal. Proc Natl Acad Sci U S A 109, 3101-3106 (2012). https://doi.org/10.1073/pnas.1114422109

Paolini, M. & De Biasi, M. Mechanistic insights into nicotine withdrawal. Biochem Pharmacol 82, 996-1007 (2011). https://doi.org/10.1016/j.bcp.2011.07.075

Zhang, L., Dong, Y., Doyon, W. M. & Dani, J. A. Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiatry 71, 184-191 (2012). https://doi.org/10.1016/j.biopsych.2011.07.024

Lerman, C. et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clinical Pharmacology & Therapeutics 79, 600-608 (2006). https://doi.org/https://doi.org/10.1016/j.clpt.2006.02.006

Walker, N. et al. Nicotine patches used in combination with e-cigarettes (with and without nicotine) for smoking cessation: a pragmatic, randomised trial. The Lancet Respiratory Medicine 8, 54-64 (2020). https://doi.org/10.1016/S2213-2600(19)30269-3

Russell, M. A., Raw, M. & Jarvis, M. J. Clinical use of nicotine chewing-gum. Br Med J 280, 1599-1602 (1980). https://doi.org/10.1136/bmj.280.6231.1599

Shiffman, S. et al. Using Nicotine Gum to Assist Nondaily Smokers in Quitting: A Randomized Clinical Trial. Nicotine Tob Res 22, 390-397 (2020). https://doi.org/10.1093/ntr/ntz090

Lindson, N. et al. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 4, Cd013308 (2019). https://doi.org/10.1002/14651858.Cd013308

Howes, S., Hartmann-Boyce, J., Livingstone-Banks, J., Hong, B. & Lindson, N. Antidepressants for smoking cessation. Cochrane Database Syst Rev 4, Cd000031 (2020). https://doi.org/10.1002/14651858.CD000031.pub5

Kranzler, H. R. et al. Placebo-controlled trial of bupropion for smoking cessation in pregnant women. Am J Obstet Gynecol MFM 3, 100315 (2021). https://doi.org/10.1016/j.ajogmf.2021.100315

Jordan, C. J. & Xi, Z. X. Discovery and development of varenicline for smoking cessation. Expert Opin Drug Discov 13, 671-683 (2018). https://doi.org/10.1080/17460441.2018.1458090

Ebbert, J. O., Croghan, I. T., Hurt, R. T., Schroeder, D. R. & Hays, J. T. Varenicline for Smoking Cessation in Light Smokers. Nicotine Tob Res 18, 2031-2035 (2016). https://doi.org/10.1093/ntr/ntw123

Cinciripini, P. M. et al. The effects of varenicline, bupropion, nicotine patch, and placebo on smoking cessation among smokers with major depression: A randomized clinical trial. Depress Anxiety 39, 429-440 (2022). https://doi.org/10.1002/da.23259

Ebbert, J. O., Edmonds, A., Luo, X., Jensen, J. & Hatsukami, D. K. Smokeless tobacco reduction with the nicotine lozenge and behavioral intervention. Nicotine Tob Res 12, 823-827 (2010). https://doi.org/10.1093/ntr/ntq088

Downloads

Posted

2023-11-03

Categories