Biomarkers And Gene Therapy With CRISPR-Cas9 To Treat Multiple Sclerosis
DOI:
https://doi.org/10.58445/rars.507Keywords:
neuroscience, biology, multiple sclerosis, genetics, crıspr, CRISPR-Cas9, heritage, neurological diseases, disease, MS, gene therapy, immunologyAbstract
Multiple Sclerosis (MS) is a partially heritable chronic autoimmune inflammatory disease characterized by the demyelination of neurons and axonal damage in the central nervous system. Treatment options such as antibody-mediated therapy, symptomatic therapy, and plasma exchange are partially effective in delaying or inhibiting the disease’s progress; however, they have many drawbacks and are unsuitable for every MS patient. Many treatments and approaches are being developed to delay the disease progression. Biomarkers are one of those approaches. Biomarkers are regarded as an important indicator of MS and are used as drug targets. Finding highly heritable potential biomarker candidates is significant for the treatment and monitoring the progress of MS. Early diagnosis of MS is complicated and unreliable in most cases; biomarker studies are aiming to solve this problem by finding specific indicators that could distinguish types or other diseases from MS. Some of them are currently in clinical use and some promising candidates are still being studied. Another treatment option is gene therapy. The research focused on the heritability of MS shows that there are genetic factors in disease progression. Genome-wide association studies (GWAS) found more than 200 gene variants responsible for disease progression. Gene therapies using CRISPR-Cas9 gene-editing techniques are being developed to target the most causative genes to reduce inflammation to decrease neurological symptoms of MS. Briefly, biomarkers, and gene therapy with CRISPR-Cas9 provide new insights for advancements like patient-specific treatments, and could provide high success rates in treatments in MS and other neurodegenerative disorders.
References
Abdelnour, S. A., Xie, L., Hassanin, A. A., Zuo, E., & Lu, Y. (2021). The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases. In Frontiers in Cell and Developmental Biology (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fcell.2021.699597
Axisa, P. P., & Hafler, D. A. (2016). Multiple sclerosis: Genetics, biomarkers, treatments. In Current Opinion in Neurology (Vol. 29, Issue 3, pp. 345–353). Lippincott Williams and Wilkins. https://doi.org/10.1097/WCO.0000000000000319
Berge, T., Leikfoss, I. S., Brorson, I. S., Bos, S. D., Page, C. M., Gustavsen, M. W., Bjølgerud, A., Holmøy, T., Celius, E. G., Damoiseaux, J., Smolders, J., Harbo, H. F., & Spurkland, A. (2016). The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by Vitamin D in CD4+ T cells. Genes and Immunity, 17(2), 118–127. https://doi.org/10.1038/gene.2015.61
Carlström, K. E., Zhu, K., Ewing, E., Krabbendam, I. E., Harris, R. A., Falcão, A. M., Jagodic, M., Castelo-Branco, G., & Piehl, F. (2020). Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17871-5
Fang, H., Bygrave, A. M., Roth, R. H., Johnson, R. C., & Huganir, R. L. (2021). An optimized crispr/cas9 approach for precise genome editing in neurons. ELife, 10. https://doi.org/10.7554/eLife.65202
Hosseini, A., Estiri, H., Niaki, H. A., Alizadeh, A., Zadeh, B. A., Ghaderian, S. M. H., Farjadfar, A., & Fallah, A. (2017). Multiple sclerosis gene therapy using recombinant viral vectors: Overexpression of IL-4, IL-10 and leukemia inhibitory factor in Wharton’s jelly stem cells in the EAE mice model. Cell Journal, 19(3), 361–374. https://doi.org/10.22074/cellj.2017.4497
Keeler, G. D., Kumar, S., Palaschak, B., Silverberg, E. L., Markusic, D. M., Jones, N. T., & Hoffman, B. E. (2018). Gene Therapy-Induced Antigen-Specific Tregs Inhibit Neuro-inflammation and Reverse Disease in a Mouse Model of Multiple Sclerosis. Molecular Therapy, 26(1), 173–183. https://doi.org/10.1016/j.ymthe.2017.09.001
Lamb, Y. N. (2022). Ocrelizumab: A Review in Multiple Sclerosis. Drugs, 82(3), 323–334. https://doi.org/10.1007/s40265-022-01672-9
Lee, M. H., Shin, J. Il, Yang, J. W., Lee, K. H., Cha, D. H., Hong, J. B., Park, Y., Choi, E., Tizaoui, K., Koyanagi, A., Jacob, L., Park, S., Kim, J. H., & Smith, L. (2022). Genome Editing Using CRISPR-Cas9 and Autoimmune Diseases: A Comprehensive Review. In International Journal of Molecular Sciences (Vol. 23, Issue 3). MDPI. https://doi.org/10.3390/ijms23031337
Lévy, C., Amirache, F., Girard-Gagnepain, A., Frecha, C., Costa, C., Bernadin, O., Negre, D., Gijsbers, R., Cosset, F.-L., & Verhoeyen, E. (2015). 1. Measles Virus Glycoprotein Pseudotyped Lentiviral Vectors Transduce Cytokine Stimulated and Resting Hematopoietic Stem Cells at an Efficiency Without Precedent. Molecular Therapy, 23, S1. https://doi.org/10.1038/mt.2015.74
Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. feng, & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. In Signal Transduction and Targeted Therapy (Vol. 8, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-023-01309-7
Loma, I., & Heyman, R. (n.d.). Multiple Sclerosis: Pathogenesis and Treatment.
Ma, Q., Shams, H., Didonna, A., Baranzini, S. E., Cree, B. A. C., Hauser, S. L., Henry, R. G., & Oksenberg, J. R. (2023). Integration of epigenetic and genetic profiles identifies multiple sclerosis disease-critical cell types and genes. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04713-5
Malkani, S. (2022). The Forefront of a Revolution: The Applications of CRISPR-Cas9 Technology to Treat Multiple Sclerosis.
Mansilla, M. J., Presas-Rodríguez, S., Teniente-Serra, A., González-Larreategui, I., Quirant-Sánchez, B., Fondelli, F., Djedovic, N., Iwaszkiewicz-Grześ, D., Chwojnicki, K., Miljković, Trzonkowski, P., Ramo-Tello, C., & Martínez-Cáceres, E. M. (2021). Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. In Cellular and Molecular Immunology (Vol. 18, Issue 6, pp. 1353–1374). Springer Nature. https://doi.org/10.1038/s41423-020-00618-z
Marin-Bañasco, C., Benabdellah, K., Melero-Jerez, C., Oliver, B., Pinto-Medel, M. J., Hurtado-Guerrero, I., de Castro, F., Clemente, D., Fernández, O., Martin, F., Leyva, L., & Suardíaz, M. (2017). Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis. British Journal of Pharmacology, 174(3), 238–253. https://doi.org/10.1111/bph.13674
Parnell, G. P., & Booth, D. R. (2017). The Multiple Sclerosis (MS) genetic risk factors indicate both acquired and innate immune cell subsets contribute to MS pathogenesis and identify novel therapeutic opportunities. In Frontiers in Immunology (Vol. 8, Issue APR). Frontiers Research Foundation. https://doi.org/10.3389/fimmu.2017.00425
Patsopoulos, N. A. (2018). Genetics of multiple sclerosis: An overview and new directions. Cold Spring Harbor Perspectives in Medicine, 8(7). https://doi.org/10.1101/cshperspect.a028951
Paul, A., Comabella, M., & Gandhi, R. (2019). Biomarkers in multiple sclerosis. Cold Spring Harbor Perspectives in Medicine, 9(3). https://doi.org/10.1101/cshperspect.a029058
Pilz, G., Sakic, I., Wipfler, P., Kraus, J., Haschke-Becher, E., Hitzl, W., Trinka, E., & Harrer, A. (2020). Chemokine CXCL13 in serum, CSF and blood-CSF barrier function: Evidence of compartment restriction. Fluids and Barriers of the CNS, 17(1). https://doi.org/10.1186/s12987-020-0170-5
Raikwar, S. P., Kikkeri, N. S., Sakuru, R., Saeed, D., Zahoor, H., Premkumar, K., Mentor, S., Thangavel, R., Dubova, I., Ahmed, M. E., Selvakumar, G. P., Kempuraj, D., Zaheer, S., Iyer, S. S., & Zaheer, A. (2019). Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. In Journal of Neuroimmune Pharmacology (Vol. 14, Issue 4, pp. 608–641). Springer. https://doi.org/10.1007/s11481-019-09849-y
Umeton, R., Bellucci, G., Bigi, R., Romano, S., Buscarinu, M. C., Reniè, R., Rinaldi, V., Pizzolato Umeton, R., Morena, E., Romano, C., Mechelli, R., Salvetti, M., & Ristori, G. (2022). Multiple sclerosis genetic and non-genetic factors interact through the transient transcriptome. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-11444-w
Ziemssen, T., Akgün, K., & Brück, W. (2019). Molecular biomarkers in multiple sclerosis. In Journal of Neuroinflammation (Vol. 16, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12974-019-1674-2
Downloads
Posted
Categories
License
Copyright (c) 2023 Emel Cirakoglu, Josh Milstein
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.