Development of Bioethanol Synthesis Process Based on Lignocellulosic Biomass Waste: A Sustainable Approach for Renewable Energy
DOI:
https://doi.org/10.58445/rars.3451Keywords:
Bioethanol Synthesis Process, Lignocellulosic Biomass Waste, Renewable EnergyAbstract
The increasing concern over climate change and the depletion of fossil fuels has encouraged greater attention toward renewable energy sources. This study explored how bioethanol can be synthesized from lignocellulosic biomass, specifically rice straw and rice husk. The process involved three main steps: pretreatment with acid-alkali to remove lignin barriers, enzyme hydrolysis to release fermentable sugars, and fermentation using Saccharomyces cerevisiae to produce ethanol.
The fermentation progress was observed through five days and the observable changes were performed qualitatively using multiple indicators: odor, condensation, and CO2 bubble formation. Based on these indicators, it has been confirmed that ethanol was successfully synthesized. Additionally, the mass balance studies indicated that the biomass samples showed measurable decrease in mass during the pre-treatment and fermentation process, which further supported that sugars were broken down and converted. Due to the absence of laboratory instruments for chemical analysis, an accurate and precise ethanol concentration could not be measured.
References
Lindsey, R., & Dahlman, L. (2025, May 29). Climate Change: Global Temperature. Climate.gov; National Oceanic and Atmospheric Administration. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
Selin Oğuz. (2023, December 12). Visualized: Global CO2 Emissions Through Time (1950–2022). Visual Capitalist. https://www.visualcapitalist.com/global-co2-emissions-through-time-1950-2022/
Igini, M. (2024, June 26). Fossil Fuel Comprised 82% of Global Energy Mix in 2023. Earth.org. https://earth.org/fossil-fuel-accounted-for-82-of-global-energy-mix-in-2023-amid-record-consumption-report/
Maity, S. K. (2015). Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 43, 1446–1466. https://doi.org/10.1016/j.rser.2014.08.075
Robak, K., & Balcerek, M. (2020). Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiological Research, 240, 126534. https://doi.org/10.1016/j.micres.2020.126534
Rai, R., Kumar, V., & Dhar, P. (2022). Recalcitrance of Lignocellulosic Biomass and Pretreatment Technologies: A Comprehensive Insight. Clean Energy Production Technologies, 13–52. https://doi.org/10.1007/978-981-19-4312-6_2
Tsapekos, P., Kougias, P. G., Egelund, H., Larsen, U., Pedersen, J., Trénel, P., & Angelidaki, I. (2017). Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses. Renewable Energy, 111, 914–921. https://doi.org/10.1016/j.renene.2017.04.061
Sunčica Beluhan, Katarina Mihajlovski, Božidar Šantek, & Mirela Ivančić Šantek. (2023). The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing. Energies, 16(19), 7003–7003. https://doi.org/10.3390/en16197003
Bhatia, L., Johri, S., & Ahmad, R. (2012). An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express, 2(1), 65. https://doi.org/10.1186/2191-0855-2-65
Nelson, D. L., & Cox, M. M. (2017). Lehninger Principles of Biochemistry (7th ed.). Basingstoke.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/s0960-8524(01)00212-7
Almeida, J. R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates bySaccharomyces cerevisiae. Journal of Chemical Technology & Biotechnology, 82(4), 340–349. https://doi.org/10.1002/jctb.1676
Chang, V. S., & Holtzapple, M. T. (2000). Fundamental Factors Affecting Biomass Enzymatic Reactivity. Applied Biochemistry and Biotechnology, 84-86(1-9), 5–38. https://doi.org/10.1385/abab:84-86:1-9:5
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953. https://doi.org/10.1007/s00253-006-0827-2
Walker, G., & Stewart, G. (2016). Saccharomyces cerevisiae in the Production of Fermented Beverages. Beverages, 2(4), 30. https://doi.org/10.3390/beverages2040030
Dou, B., Dupont, V., Williams, P. T., Chen, H., & Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613–2620. https://doi.org/10.1016/j.biortech.2008.11.037
Posted
Categories
License
Copyright (c) 2025 Kiara Madeleine Halim, Nicholas Hendra

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.