Preprint / Version 1

What Is The Nature Of Dark Matter’s Self-interaction, And Could It Explain The Unexpected Diversity In Galaxy Rotation Curves Across Different Mass Scales?

##article.authors##

  • Wijdan Ali The City School PAF Chapter

DOI:

https://doi.org/10.58445/rars.3208

Keywords:

self-interacting dark matter, core-cusp problem , rotational curves

Abstract

The rise in rotational speed of galaxies, despite increasing radii away from the center, hints toward non-luminous, dark matter. The standard CDM model, predicting cuspy density profiles, was proposed to explain the nature of dark matter and, initially, aligned with the observations; however, later observations of dwarf galaxies induced complications, because these systems were found to have shallower, core-like density profiles. This issue, characterized as the ‘core-cusp’ problem, indicates diversity in galactic rotation curves at large. The Self-interacting Dark Matter (SIDM) model emerged as an alternative explanation for dark matter’s nature, where self-interactions between dark matter particles naturally produce cores. The intensity of these self-interactions is judged by the merit of cross-section per unit mass: σ/mdm ∼ 1 cm2/g. This paper takes into account distinct behaviors of dark matter at three galactic mass scales: dwarf galaxies, mid-sized galaxies, and clusters. Although SIDM simulations were steadily in line with observations at lighter mass scales, it raised the requirement of velocity-dependent self-interaction cross-section in order to remain applicable at heavier mass scales. Not inclining toward SIDM only, this paper scrutinizes other proposed paradigms for explaining dark matter behaviour as well. Finally, it discusses what upcoming observatory missions may entail and proposes future research directions in four domains (observations, simulations, data analysis, and laboratory experiments) to vindicate or disprove SIDM framework.

References

Andrade, K. E., Fuson, J., Gad-Nasr, S., Kong, D., Minor, Q., Roberts, M. G., & Kaplinghat, M. (2021, November 12). A Stringent Upper Limit on Dark Matter Self-Interaction Cross Section from Cluster Strong Lensing. Monthly Notices of the Royal Astronomical Society, 510(1).

Arrenberg, S., Baer, H., Barger, V., Baudis, L., Bauer, D., Buckley, J., Cahill-Rowley, M., Cotta, R., Drlica-Wagner, A., Feng, J. L., Funk, S., Hewett, J., Hooper, D., Ismail, A., Kaplinghat, M., Kong, K., Kusenko, A., Matchev, K., McCaskey, M., … Yu, H.-B. (2013, October 31). Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond. 26 - 30. https://arxiv.org/pdf/1310.8621

Buckley, M. R., & Fox, P. J. (2010, April 19). Dark matter self-interactions and light force carriers. Physics Review D, 81.

Bullock, J. S., & Boylan-Kolchin, M. (2017). Small-Scale Challenges to the ACDM Paradigm. Annual Review Of Astronomy & Astrophysics, 55.

Burkert, A. (2020, November 30). Fuzzy Dark Matter and Dark Matter Halo Cores. The Astrophysical Journal, 904(2).

Carleton, T., Errani, R., Cooper, M., Kaplinghat, M., Penarrubia, J., & Guo, Y. (2019, May). The Formation of Ultra Diffuse Galaxies in Cored Dark Matter Halos Through Tidal Stripping and Heating. Monthly Notices of the Royal Astronomical Society, 485(1).

Chae, K.-H., Lelli, F., Desmond, H., McGaugh, S. S., Li, P., & Schombert, J. M. (2021, March). Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies". The Astrophysical Journal, 910(1).

Correa, C. A. (2021, February 22). Constraining velocity-dependent self-interacting dark matter with the Milky Way’s dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 503(1).

Creasey, P., Sameie, O., Sales, L. V., Yu, H.-B., Vogelsberger, M., & Zavala, J. (2017, June). Spreading out and staying sharp -- creating diverse rotation curves via baryonic and self-interaction effects. Monthly Notices of the Royal Astronomical Society, 468.

De Blok, W. J. G., Walter, F., Brinks, E., Trachternach, C., Oh, S.-H., & Kennicutt Jr., R. C. (2008, November). High-Resolution Rotation Curves and Galaxy Mass Models from THINGS. The Astronomical Journal, 136.

Genzel, R., Forster Schreiber, N. M., Ubler, H., Lang, P., Naab, T., Bender, R., Tacconi, L. J., Wisnioski, E., Wuyts, S., Alexander, T., Beifiori, A., Belli, S., Brammer, G., Burkert, A., Carollo, C. M., Chan, J., Davies, R., Fossati, M., Galametz, A., … Wilman, D. (2017, March 16). Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. nature, 543.

Harvey, D., Massey, R., Kitching, T., Taylor, A., & Tittley, E. (2015, March). The nongravitational interactions of dark matter in colliding galaxy clusters. Science, 347(6229).

Hu, W., Barkana, R., & Gruzinov, A. (2000, March). Cold and Fuzzy Dark Matter. Physics Review Letters, 85.

Kamada, A., Kaplinghat, M., Pace, A. B., & Yu, H.-B. (2016, November 8). How the Self-Interacting Dark Matter Model Explains the Diverse Galactic Rotation Curves. https://arxiv.org/abs/1611.02716

Li, P., Lelli, F., McGaugh, S. S., & Schombert, J. M. (2020, January 28). A Comprehensive Catalog of Dark Matter Halo Models for SPARC Galaxies. The Astrophysical Journal Supplement Series, 247.

Loeb, A., & Weiner, N. (2011, April 28). Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Physical Review Letters, 106.

Lovell, M. R., Frenk, C. S., Eke, V. R., Jenkins, A., Gao, L., & Theuns, T. (2014, February 5). The properties of warm dark matter haloes. Monthly Notices of the Royal Astronomical Society, 439(1).

Markevitch, M. L., Gonzalez, A. H., Clowe, D., Vikhlinin, A., Vikhlinin, A., Forman, W. R., Jones, C., Murray, S. S., & Tucker, W. (2004, May 10). Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56. The Astrophysical Journal, 606(2).

Massey, R., Harvey, D., Liesenborgs, J., Richard, J., Stach, S., Swinbank, M., Taylor, P., Williams, L., Clowe, D., Courbin, F., Edge, A., Israel, H., Jauzac, M., Joseph, R., Jullo, E., Kitching, T. D., Leonard, A., Merten, J., Nagai, D., … Tittley, E. (2018, April 17). Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter. Monthly Notices of the Royal Astronomical Society, 447(1).

Mastromarino, C., Despali, G., Moscardini, L., Robertson, A., Meneghetti, M., & Maturi, M. (2023, June 22). Properties and observables of massive galaxies in self-interacting dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 524.

Minor, Q., Gad-Nasr, S., Kaplinghat, M., & Vegetti, S. (2021, October). An unexpected high concentration for the dark substructure in the gravitational lens SDSSJ0946+1006. Monthly Notices of the Royal Astronomical Society, 507(2).

Nadler, E. O., Banarjee, A., Adhikari, S., Mao, Y.-Y., & Wechsler, R. H. (2020, June 18). Signatures of Velocity-Dependent Dark Matter Self-Interactions in Milky Way-mass Halos. The Astrophysical Journal, 896.

Navarro, J., Frank, C., & White, S. (1996). The Structure Of Cold Dark Matter Halos. The Astrophysical Journal, 3-9.

Oh, S.-H., Hunter, D. A., Elmegreen, B. G., Schruba, A., Walter, F., Rupen, M. P., Young, L. M., Simpson, C. E., Johnson, M., Herrmann, K. A., Ficut-Vicas, D., Cigan, P., Heesen, V., Ashley, T., & Zhang, H.-X. (2015, February 4). High-resolution mass models of dwarf galaxies from LITTLE THINGS. The Astronomical Journal, 149.

Oman, K. A., Navarro, J. F., Fattahi, A., Frenk, C. S., Sawala, T., White, S. D. M., Bower, R., Crain, R. A., Furlong, M., Schaller, M., Schaye, J., & Thenus, T. (2015, July 10). The unexpected diversity of dwarf galaxy rotation curves. Monthly Notices Of The Royal Astronomical Society, 452.

Pontzen, A., & Governato, F. (2012, April 10). How supernova feedback turns dark matter cusps into cores. Monthly Notices of the Royal Astronomical Society, 421(4).

Read, J. I., Walker, M. G., & Stegar, P. (2019, January 3). Dark matter heats up in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 484.

Robles, V. H., Bullock, J. S., Elbert, O. D., Fitts, A., Gonzalez-Samaniego, A., Bolyan-Kolchin, M., Hopkins, P. F., Faucher-Giguere, C.-A., Keres, D., & Hayward, C. C. (2017, September 5). SIDM on fire: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 472(3).

Rocha, M., Peter, A. H. G., Bullock, J. S., Kaplinghat, M., Garrison-Kimmel, S., Oñorbe, J., & Moustakas, L. A. (2013, January 18). Cosmological simulations with self-interacting dark matter – I. Constant-density cores and substructure. Monthly Notices of the Royal Astronomical Society, 430(1).

Rogstad, D. H., Lockhart, I. A., & Wright, M. C. H. (1974, October 15). Aperture-synthesis observations of H I in the galaxy M83. Astrophysical Journal, 193(1974).

Rubin, V. C., & Ford, W. K. (1970). Rotation Of The Andromeda Nebula From A Spectroscopic Survey Of Emission Regions. Astrophysical Journal, 159, 14, 22.

Rubin, V. C., Ford, W. K., & Thonnard, N. (1978). Radial Velocities Of Spiral Galaxies Determined From 21-cm Neutral Hydrogen Observations. The Astronomical Journal, 83.

Salucci, P., & Burkert, A. (2000, July). Dark Matter Scaling Relations. The Astrophysical Journal, 537(1).

Sameie, O., Chakrabarti, S., Yu, H.-B., Boylan-Kolchin, M., Vogelsberger, M., Zavala, J., & Hernquist, L. (2020). Simulating the "hidden giant" in cold and self-interacting dark matter models. Monthly Notices of the Royal Astronomical Society, 000.

Spergel, D. N., & Steinhardt, P. J. (2000, February 28). Observational evidence for self-interacting dark matter. Arxiv, 1. https://arxiv.org/pdf/astro-ph/9909386

Tulin, S., & Yu, H.-B. (2018, February 5). Dark matter self-interactions and small scale structure. Physics Reports, 730.

Vogelsberger, M., Zavala, J., Simpson, C., & Jenkins, A. (2014, September 17). Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 444(4).

Walker, M. G., & Peñarrubia, J. (2011, November 2). A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. The Astrophysical Journal, 742.

Zavala, J., Vogelsberger, M., & Walker, M. G. (2013, February 1). Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. Monthly Notices of the Royal Astronomical Society, 431.

Downloads

Posted

2025-10-12

Categories