Preprint / Version 1

Formation of Quark Gluon Plasma and Enhancement of Strangeness in Proton-Proton Collisions

##article.authors##

  • Hashim Mohammad N/A

DOI:

https://doi.org/10.58445/rars.3175

Keywords:

Review Paper, High-energy Physics

Abstract

Quark Gluon Plasma (QGP) is the state of matter created in labs to study  the first few moments after the big bang. It is characterized by its high energy density and the deconfinement of the quarks within it. Among the markers of QGP is the production of strange quarks, produced by processes such as flavour creation and gluon splitting. Such production of strange quarks is observed in proton-proton collisions at the Large Hadron Collider (LHC), indicating that QGP is indeed produced. However other markers such as jet quenching and charmonia suppression are still in question. Though some QGP formation markers are absent, the production of strangeness in pp collisions makes a strong case that QGP was indeed produced.

     

References

References

ALICE COLLABORATION. (n.d.). Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nature, 13, 535-539. Nature.

ALICE COLLABORATION. (2017). Proton-Proton collisions Get Stranger. CERNCOURIER. Retrieved August 15, 2025, from https://cerncourier.com/a/proton-proton-collisions-become-stranger/

Brookhaven National Laboratory. (2025, March 24). Relativistic Heavy Ion Collider (RHIC) Enters 25th and Final Run. Brookhaven National Laboratory. https://www.bnl.gov/newsroom/news.php?a=122346

Attems, M., Brewer, J., Innocenti, G. M., Mazeliauskus, A., Park, S., Schee, W. V., & Wiedemann, U. A. (n.d.). The medium-modified g→cc¯ splitting function in the BDMPS-Z formalism. JHEP, 1, 80. INSPIRE HEP. 10.1007/JHEP01(2023)080

Brodsky, S. J., Deur, A., & Roberts, C. D. (2024, April 16). Physicists Finally Know How the Strong Force Gets Its Strength. Scientific American. Retrieved August 15, 2025, from https://www.scientificamerican.com/article/physicists-finally-know-how-the-strong-force-gets-its-strength/

DOE Explains...Quarks and Gluons. (n.d.). Department of Energy. Retrieved September 8, 2025, from https://www.energy.gov/science/doe-explainsquarks-and-gluons

Fitch, V. L. (1981). The Discovery of Charge Conjugation--Parity Asymmetry. New Series, 212(4498), 989-993. JSTOR. https://www.jstor.org/stable/1685462

Four Forces. (2024, October 22). NASA Science. Retrieved August 15, 2025, from https://science.nasa.gov/universe/overview/forces/

Hanafy, M., Qandil, O. S.A., & Shalaby, A. G. (2021, December 16). Strangeness Enhancement at LHC Energies Using the Thermal Model and EPOSLHC Event Generator. WILEY Online Library. https://doi.org/10.1155/2021/2489232

Lopes, A. (2023, March 31). ALICE sees the ridge in simplest collisions yet. CERN. Retrieved September 8, 2025, from https://home.cern/news/news/physics/alice-sees-ridge-simplest-collisions-yet

Pradeep, M. S., & Stephanov, M. (2023, December 20). How Do Quark-Gluon-Plasma Fireballs Explode into Hadrons? Department of Energy. Retrieved August 15, 2025, from https://www.energy.gov/science/np/articles/how-do-quark-gluon-plasma-fireballs-explode-hadrons

Rafelski, J. (1981). Strangeness Production in Quark Gluon Plasma. CERN.

Sahoo, R. (n.d.). Possible formation of Quark-Gluon Plasma in small collision systems at the Large Hadron Collider: Observations and Challenges. Arxiv.

Sahoo, R. (2019). Possible Formation of QGP-droplets in Proton-Proton Collisions at the CERN Large Hadron Collider. AAPPS, 29(4), 16. Inspire HEP. 10.22661/AAPPSBL.2019.29.4.16

Stritto, L. D. (2024, December 11). Unveiling the Early Universe: The Historical Journey to Discovering the Quark-Gluon Plasma. | EP News. Retrieved August 15, 2025, from https://ep-news.web.cern.ch/content/unveiling-early-universe-historical-journey-discovering-quark-gluon-plasma

WA97 Collaboration. (2000). Study of strangeness enhancement in lead-lead collisions at the CERN SPS. CERN.

Gross, F., Klempt, E., Brodsky, S. J., Buras, A. J., Burkert, V. D., Heinrich, G., Jakobs, K., Meyer, C. A., Orginos, K., Strickland, M., Stachel, J., Zanderighi, G., Brambilla, N., Braun-Munzinger, P., Britzger, D., Capstick, S., Cohen, T., Crede, V., Constantinou, M., Davies, C., Del Debbio, L., Denig, A., DeTar, C., Deur, A., Dokshitzer, Y., Dosch, H. G., Dudek, J., Dunford, M., Epelbaum, E., Escobedo, M. A., Fritzsch, H., Fukushima, K., Gambino, P., Gillberg, D., Gottlieb, S., Grafstrom, P., Grazzini, M., Grube, B., Guskov, A., Iijima, T., Ji, X., Karsch, F., Kluth, S., Kogut, J. B., Krauss, F., Kumano, S., Leinweber, D., Leutwyler, H., Li, H.-B., Li, Y., Malaescu, B., Mariotti, C., Maris, P., Marzani, S., Melnitchouk, W., Messchendorp, J., Meyer, H., Mitchell, R. E., Mondal, C., Nerling, F., Neubert, S., Pappagallo, M., Pastore, S., Peláez, J. R., Puckett, A., Qiu, J., Rabbertz, K., Ramos, A., Rossi, P., Rustamov, A., Schäfer, A., Scherer, S., Schindler, M., Schramm, S., Shifman, M., Shuryak, E., Sjöstrand, T., Sterman, G., Stewart, I. W., Stroth, J., Swanson, E., de Téramond, G. F., Thoma, U., Vairo, A., van Dyk, D., Vary, J., Virto, J., Vos, M., Weiss, C., Wobisch, M., Wu, S. L., Young, C., Yuan, F., Zhao, X. & Zhou, X. (2022). 50 Years of Quantum Chromodynamics

Downloads

Posted

2025-10-05

Categories