Based on nanoparticles Orientable ferromagnetic Liquid
DOI:
https://doi.org/10.58445/rars.3151Keywords:
Soft robotics, Ferrofluid, Magnetic nanoparticles, Programmable magnetic fields, NanotechnologyAbstract
Soft robots controlled by an external magnetic field are capable of performing movement and manipulation tasks effectively thanks to their ability to undergo programmed deformations, which in turn opens up access to hard-to-reach areas of the human body and expands the possibilities for minimally invasive medical interventions. Despite the potential of such systems, most existing solutions are based on the use of elastomeric materials, whose mechanical properties limit the degree of their deformation, reducing their effectiveness in confined spaces and fixing their functionality at the design stage without the possibility of adaptation during operation.
This project has developed a control system for ferrofluid droplets that function as programmable magnetic soft robots. Using programmable electromagnets, the system allows temporary adjustment of external magnetic fields. This enables the movement of droplets through narrow channels, their separation and merging for targeted delivery of liquid cargo, as well as dynamic reconfiguration for precise manipulation of delicate objects. The behavior of ferrofluid droplets was also studied under magnetic attraction, which allowed their behavior in response to changes in magnetic fields to be recorded. This approach demonstrates significant potential for application in confined spaces, including biomedical devices and spacecraft, where autonomy is critical to the success of long-duration space missions.
References
D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, pp. 467–475, 2015. doi: 10.1038/nature14543.
C. S. X. Ng, M. W. M. Tan, C. Xu, Z. Yang, P. S. Lee, and G. Z. Lum, “Locomotion of miniature soft robots,” Adv. Mater., vol. 33, no. 19, p. 2003558, 2021. doi: 10.1002/adma.202003558.
G. M. Whitesides, “Soft robotics,” Angew. Chem. Int. Ed., vol. 57, no. 16, pp. 4258–4273, 2018. doi: 10.1002/anie.201800907.
C. Huang, Z. Lai, X. Wu, and T. Xu, “Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots,” Cyborg Bionic Syst., vol. 2022, no. 39, 2022. doi: 10.34133/cbsystems.0004.
H. Shahsavan, A. Aghakhani, H. Zeng, M. Sitti, and J. A. Rogers, “Bioinspired underwater locomotion of light-driven liquid crystal gels,” Proc. Natl. Acad. Sci. U.S.A., vol. 117, no. 10, pp. 5125–5133, 2020. doi: 10.1073/pnas.1917952117.
Y. Chen et al., “Light-driven bimorph soft actuators: Design, fabrication, and properties,” Mater. Horiz., vol. 8, pp. 728–757, 2021. doi: 10.1039/D0MH01406K.
Y. Song, M. Zadan, K. Misra, Z. Li, J. Wang, C. Majidi, and S. Kumar, “Navigating soft robots through wireless heating,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), London, UK, May–Jun. 2023, doi: 10.1109/ICRA48891.2023.10161540.
Z. Ma and D. Sameoto, “A review of electrically driven soft actuators for soft robotics,” Micromachines, vol. 13, no. 11, p. 1881, 2022. doi: 10.3390/mi13111881.
J. Ahn et al., “A review of recent advances in electrically driven polymer‐based flexible actuators: Smart materials, structures, and their applications,” Adv. Mater. Technol., vol. 7, no. 11, p. 2200041, 2022. doi: 10.1002/admt.202200041.
S. Tang et al., “Enzyme-powered Janus platelet cell robots for active and targeted drug delivery,” Sci. Robot., vol. 5, no. 43, p. eaba6137, 2020. doi: 10.1126/scirobotics.aba6137.
B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng., vol. 12, pp. 55–85, 2010. doi: 10.1146/annurev-bioeng-010510-103409.
M. Sitti, “Miniature soft robots—Road to the clinic,” Nat. Rev. Mater., vol. 3, pp. 74–75, 2018. doi: 10.1038/s41578-018-0001-3.
Y. Kim, H. Yuk, R. Zhao, S. A. Chester, and X. Zhao, “Printing ferromagnetic domains for untethered fast-transforming soft materials,” Nature, vol. 558, no. 7709, pp. 274–279, 2018. doi: 10.1038/s41586-018-0185-0.
T. Wang, Z. Ren, W. Hu, M. Li, and M. Sitti, “A light-driven artificial flytrap with directional leaf closure and ultrafast motion,” Sci. Adv., vol. 7, no. 19, p. eabf7364, 2021. doi: 10.1126/sciadv.abf7364.
H. Zhou et al., “Hydrogel-based stimuli-responsive micromotors for biomedicine,” Cyborg Bionic Syst., vol. 2022, art. 9852853, 2022. doi: 10.34133/2022/9852853.
J. Zhang et al., “Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly,” Sci. Robot., vol. 6, no. 53, p. eabf0112, 2021. doi: 10.1126/scirobotics.abf0112.
H. Song et al., “Reprogrammable ferromagnetic domains for reconfigurable soft magnetic actuators,” Nano Lett., vol. 20, no. 7, pp. 5185–5192, 2020. doi: 10.1021/acs.nanolett.0c01418.
O. Oehlsen, S. I. Cervantes-Ramírez, P. Cervantes-Avilés, and I. A. Medina-Velo, “Approaches on ferrofluid synthesis and applications: Current status and future perspectives,” ACS Omega, vol. 7, no. 4, pp. 3134–3150, 2022. doi: 10.1021/acsomega.1c05631.
P. Dunne et al., “Liquid flow and control without solid walls,” Nature, vol. 581, no. 7807, pp. 58–62, 2020. doi: 10.1038/s41586-020-2254-4.
F. Serwane et al., “In vivo quantification of spatially varying mechanical properties in developing tissues,” Nat. Methods, vol. 14, no. 2, pp. 181–186, 2017. doi: 10.1038/nmeth.4101.
A. Komaee and B. Shapiro, “Magnetic steering of a distributed ferrofluid spot towards a deep target with minimal spreading,” in Proc. IEEE Conf. Decis. Control, 2011, pp. 7950–7955. doi: 10.1109/CDC.2011.6160737.
A. Nacev et al., “Towards control of magnetic fluids in patients: Directing therapeutic nanoparticles to disease locations,” IEEE Control Syst. Mag., vol. 32, no. 3, pp. 32–74, 2012. doi: 10.1109/MCS.2012.2189052.
X. Fan, M. Sun, L. Sun, and H. Xie, “Ferrofluid droplets as liquid microrobots with multiple deformabilities,” Adv. Funct. Mater., vol. 30, no. 24, p. 2000138, 2020. doi: 10.1002/adfm.202000138.
A. Li et al., “Programmable droplet manipulation by a magnetic-actuated robot,” Sci. Adv., vol. 6, no. 7, p. eay5808, 2020. doi: 10.1126/sciadv.aay5808.
M. H. Sarkhosh, M. Yousefi, M. A. Bijarchi, H. N. Pishkenari, and K. Forghani, “Manipulation of ferrofluid marbles and droplets using repulsive force in magnetic digital microfluidics,” Sens. Actuators A: Phys., vol. 363, p. 114733, 2023. doi: 10.1016/j.sna.2023.114733.
M. Sun, X. Fan, C. Tian, M. Yang, L. Sun, and H. Xie, “Swarming microdroplets to a dexterous micromanipulator,” Adv. Funct. Mater., vol. 31, p. 2011193, 2021. doi: 10.1002/adfm.202011193.
M. Sun, S. Yang, J. Jiang, and L. Zhang, “Horizontal and vertical coalescent microrobotic collectives using ferrofluid droplets,” Adv. Mater., vol. 35, p. 2300521, 2023. doi: 10.1002/adma.202300521.
Y. Lalatonne, J. Richardi, and M. P. Pileni, "Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals," Nature Materials, vol. 3, pp. 121–125, 2004. doi:10.1038/nmat1054
C. Scherer and A. M. Figueiredo Neto, "Ferrofluids: Properties and Applications," Brazilian Journal of Physics, vol. 35, no. 4, pp. 718–727, Sep. 2005.
doi:10.1590/S0103-97332005000400018
F. Batalioto, A. M. Figueiredo Neto, and G. Barbero, "Ions, adsorption and electric response of a ferrofluid cell," Phys. Chem. Chem. Phys., vol. 24, no. 5, pp. 3400–3409, 2022. doi:10.1039/D1CP04724H
R. Massart, E. Dubois, V. Cabuil, and E. Hasmonay, "Preparation and properties of monodisperse magnetic fluids," Journal of Magnetism and Magnetic Materials, vol. 149, nos. 1–2, pp. 1–5, Aug. 1995. https://doi.org/10.1016/0304-8853(95)00316-9
K. S. Egorova, E. G. Gordeev, and V. P. Ananikov, "Biological activity of ionic liquids and their application in pharmaceuticals and medicine," Russian Chemical Reviews, vol. 117, no.10, pp. 7132–7189, Jan. 2017. doi:10.1021/acs.chemrev.6b00562
M. Bhatnagar and M. Vishnoi, “Different methods of ferro-fluids production with their stability and its applications especially in internal combustion engines–a review,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021. doi:10.1080/15567036.2021.1998251
S. Genc and B. Derin, “Synthesis and rheology of ferrofluids: a review,” Current Opinion in Chemical Engineering, vol. 3, pp. 118–124, 2014. doi:10.1016/j.coche.2013.12.006
M. Thirumalai, B. Bharathy Jesuraja, and P. Paulraj, "Effects of salt, vinegar and bleach in accelerating rusting of iron," International Journal of Innovative Research and Advanced Studies (IJIRAS), vol. 7, no. 6, pp. 1-5, Jun. 2020. Available: https://www.ijiras.com
A. Lesbayev, D. Akalim and D. Yerezhep, " Investigation of nanostructured composite fibers based on Fe3O4," Журнал проблем эволюции открытых систем, 26(2), 25–36. https://doi.org/10.26577/JPEOS.2024.v26-i2-a4
S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, "Monodisperse MFe₂O₄ (M = Fe, Co, Mn) nanoparticles," J. Am. Chem. Soc., vol. 126, no. 1, pp. 273–279, 2004. doi:10.1021/ja0380852
S. Xie, C. Zhao, B. Fan, Z. Yu, M. Xia, L. Tu, J. Song, X. Zhao, and M. Wang, "Metabolic network of ammonium in cereal vinegar solid-state fermentation and its response to acid stress," Food Microbiol., vol. 95, p. 103684, May 2021. https://doi.org/10.1016/j.fm.2020.103684
C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, "Colloidal synthesis of nanocrystals and nanocrystal superlattices," IBM J. Res. Dev., vol. 45, pp. 47–56, 2001. https://doi.org/10.1147/rd.451.0047
D. Susan-Resiga, I. Malaescu, O. Marinica, and C. N. Marin, "Magnetorheological properties of a kerosene-based ferrofluid with magnetite particles hydrophobized in the absence of the dispersion medium," Phys. B: Condens. Matter, vol. 587, p. 412150, 2020. https://doi.org/10.1016/j.physb.2020.412150
X. Fan, X. Dong, A. Karacakol, H. Xie, and M. Sitti, "Reconfigurable multifunctional ferrofluid droplet robots," Proc. Natl. Acad. Sci. USA, vol. 117, pp. 27916–27926, 2020, doi: 10.1073/pnas.2016388117.
F. Kong, Y. Zhu, C. Yang, H. Jin, J. Zhao, and H. Cai, "Integrated locomotion and deformation of a magnetic soft robot: modeling, control, and experiments," IEEE Trans. Ind. Electron., vol. 68, pp. 5078–5087, 2021, doi: 10.1109/TIE.2020.2992000.
Downloads
Posted
Categories
License
Copyright (c) 2025 Adilzhan Ayazbek

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.