Mechanisms of neuroplasticity induced by permeable serotonergics
DOI:
https://doi.org/10.58445/rars.3131Keywords:
serotonin, psychedelics, neuroplasticityAbstract
Major depression affects about 280 million people worldwide and costs around 326 billion dollars per year in the United States, though the standard medications take 2-3 months to take effect, so faster and longer-lasting treatments are needed. Serotonergic psychedelics such as psilocybin, DMT or ayahuasca, LSD, and mescaline can reduce depression and anxiety symptoms after only one or two doses, with benefits that last from weeks to months. The persistence of psychedelic benefits points to real biological change, not just temporary drug action. Variants in the serotonin HTR2A gene can influence cortical serotonin 5-HT2A receptor density and may shape sensitivity. In cultured neurons, multiple psychedelic chemotypes and non-hallucinogenic analogs increase dendritic growth and synaptogenesis, while impermeable analogs fail unless forced into the cell, showing that intracellular permeability is required. In cortical circuits, 5-HT2A stimulation increases glutamatergic drive and AMPA signaling, triggers gene programs linked to plasticity, and supports extinction learning. Across species, these changes align with antidepressant and anxiolytic-like behaviors that can last days to weeks and may not require hallucinogenic effects. Here, I discuss genetics, cellular and systems research, animal behavior, and recent human data to explain how membrane-permeable serotonergics act as neuroplastogens, which help build out neural synapses. I propose a permeability plus mechanism model; The serotonergic mechanism must be both cell-permeable and engage 5-HT2A. A permeable psychedelic reaches intracellular 5-HT2A pools, then 5-HT2A activation quickly boosts plasticity related gene expression and causes structural change, 5-HT2A signaling raises BDNF and engages TrkB to support neuronal growth, and 5-HT2A activation in cortex increases glutamate and AMPA signaling that helps stabilize new synapses, together linking permeability, receptor engagement, and circuit activity to durable neuroplasticity.
References
Belleau, E. L., Treadway, M. T., & Pizzagalli, D. A. (2019). The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biological Psychiatry, 85(6), 443–453. https://doi.org/10.1016/j.biopsych.2018.09.031
Boku, S., Nakagawa, S., Toda, H., & Hishimoto, A. (2018). Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry and Clinical Neurosciences, 72(1), 3–12. https://doi.org/10.1111/pcn.12604
Calder, A. E., & Hasler, G. (2023). Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology, 48, 104–112. https://doi.org/10.1038/s41386-022-01389-z
Cameron, L. P., Benson, C. J., DeFelice, B. C., Fiehn, O., & Olson, D. E. (2019). Chronic, intermittent microdoses of the psychedelic N,N-dimethyltryptamine (DMT) produce positive effects on mood and anxiety in rodents. ACS Chemical Neuroscience, 10(7), 3261–3270. https://doi.org/10.1021/acschemneuro.8b00692
Catlow, B. J., Song, S., Paredes, D. A., Kirstein, C. L., & Sanchez-Ramos, J. (2013). Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Experimental Brain Research, 228(4), 481–491. https://doi.org/10.1007/s00221-013-3579-0
de Almeida, R. N., Galvão, A. C. M., da Silva, F. S., Silva, E. A. D. S., Palhano-Fontes, F., Maia-de-Oliveira, J. P., de Araújo, L. B., Lobão-Soares, B., & Galvão-Coelho, N. L. (2019). Modulation of serum brain-derived neurotrophic factor by a single dose of ayahuasca: Observation from a randomized controlled trial. Frontiers in Psychology, 10, 1234. https://doi.org/10.3389/fpsyg.2019.01234
de Meiroz Grilo, M. L. P., de Sousa, G. M., de Mendonça, L. A. C., Lobão-Soares, B., de Sousa, M. B. C., Palhano-Fontes, F., de Araujo, D. B., Perkins, D., Hallak, J. E. C., & Galvão-Coelho, N. L. (2022). Prophylactic action of ayahuasca in a non-human primate model of depressive-like behavior. Frontiers in Behavioral Neuroscience, 16, 901425. https://doi.org/10.3389/fnbeh.2022.901425
de Vos, C. M. H., Mason, N. L., & Kuypers, K. P. C. (2021). Psychedelics and neuroplasticity: A systematic review unraveling the biological underpinnings of psychedelics. Frontiers in Psychiatry, 12, 724606. https://doi.org/10.3389/fpsyt.2021.724606
Dolder, P. C., Grünblatt, E., Müller, F., Borgwardt, S. J., & Liechti, M. E. (2017). A single dose of LSD does not alter gene expression of the serotonin 2A receptor gene (HTR2A) or early growth response genes (EGR1-3) in healthy subjects. Frontiers in Pharmacology, 8, 423. https://doi.org/10.3389/fphar.2017.00423
Domanegg, K., Sommer, W. H., & Meinhardt, M. W. (2023). Psychedelic targeting of metabotropic glutamate receptor 2 and its implications for the treatment of alcoholism. Cells, 12(6), 963. https://doi.org/10.3390/cells12060963
Du, Y., Li, Y., Zhao, X., Yao, Y., Wang, B., Zhang, L., & Wang, G. (2023). Psilocybin facilitates fear extinction in mice by promoting hippocampal neuroplasticity. Chinese Medical Journal, 136(24), 2983–2992. https://doi.org/10.1097/CM9.0000000000002647
Greenberg, P. E., Fournier, A. A., Sisitsky, T., Simes, M., Berman, R., Koenigsberg, S. H., & Kessler, R. C. (2021). The economic burden of adults with major depressive disorder in the United States (2010 and 2018). PharmacoEconomics, 39(6), 653–665. https://doi.org/10.1007/s40273-021-01019-4
Hatzipantelis, C. J., & Olson, D. E. (2024). The effects of psychedelics on neuronal physiology. Annual Review of Physiology, 86, 27–47. https://doi.org/10.1146/annurev-physiol-042022-020923
Hutten, N. R. P. W., Mason, N. L., Dolder, P. C., Theunissen, E. L., Holze, F., Liechti, M. E., Varghese, N., Eckert, A., Feilding, A., Ramaekers, J. G., & Kuypers, K. P. C. (2020). Low doses of LSD acutely increase BDNF blood plasma levels in healthy volunteers. ACS Pharmacology & Translational Science, 4(2), 461–466. https://doi.org/10.1021/acsptsci.0c00099
Lambe, E. K., & Aghajanian, G. K. (2006). Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: Role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology, 31(8), 1682–1689. https://doi.org/10.1038/sj.npp.1300944
Lewis, V., Bonniwell, E. M., Lanham, J. K., Ghaffari, A., Sheshbaradaran, H., Cao, A. B., Calkins, M. M., Bautista-Carro, M. A., Arsenault, E., Telfer, A., Taghavi-Abkuh, F. F., Malcolm, N. J., El Sayegh, F., Abizaid, A., Schmid, Y., Morton, K., Halberstadt, A. L., Aguilar-Valles, A., & McCorvy, J. D. (2023). A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Reports, 42(3), 112203. https://doi.org/10.1016/j.celrep.2023.112203
Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Soltanzadeh Zarandi, S., Sood, A., Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-McKenney, K. M., Gray, J. A., & Olson, D. E. (2018). Psychedelics promote structural and functional neural plasticity. Cell Reports, 23(11), 3170–3182. https://doi.org/10.1016/j.celrep.2018.05.022
Madsen, M. K., Fisher, P. M., Burmester, D., Dyssegaard, A., Stenbæk, D. S., Kristiansen, S., Johansen, S. S., Lehel, S., Linnet, K., Svarer, C., Erritzoe, D., Ozenne, B., & Knudsen, G. M. (2019). Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology, 44(7), 1328–1334. https://doi.org/10.1038/s41386-019-0324-9
Mason, N. L., Kuypers, K. P. C., Müller, F., Reckweg, J., Tse, D. H. Y., Toennes, S. W., Hutten, N. R. P. W., Jansen, J. F. A., Stiers, P., Feilding, A., & Ramaekers, J. G. (2020). Me, myself, bye: Regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacology, 45(12), 2003–2011. https://doi.org/10.1038/s41386-020-0718-8
Menke, A., Sämann, P., Kloiber, S., Czamara, D., Lucae, S., Hennings, J., Heck, A., Kohli, M. A., Czisch, M., Müller-Myhsok, B., Holsboer, F., & Binder, E. B. (2012). Polymorphisms within the metabotropic glutamate receptor 1 gene are associated with depression phenotypes. Psychoneuroendocrinology, 37(4), 565–575. https://doi.org/10.1016/j.psyneuen.2011.09.003
Moliner, R., Girych, M., Brunello, C. A., et al. (2023). Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nature Neuroscience, 26, 1032–1041. https://doi.org/10.1038/s41593-023-01316-5
Mueller, F., Lenz, C., Dolder, P. C., Harder, S., Schmid, Y., Lang, U. E., Liechti, M. E., & Borgwardt, S. (2017). Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Translational Psychiatry, 7(4), e1084. https://doi.org/10.1038/tp.2017.54
Muschamp, J. W., Regina, M. J., Hull, E. M., Winter, J. C., & Rabin, R. A. (2004). Lysergic acid diethylamide and [−]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Research, 1023(1), 134–140. https://doi.org/10.1016/j.brainres.2004.07.044
Nichols, D. E. (2016). Psychedelics. Pharmacological Reviews, 68(2), 264–355. https://doi.org/10.1124/pr.115.011478
Schmidt, M. (2023). The psychedelic psilocin fosters neuroplasticity in iPSC-derived human cortical neurons [Doctoral dissertation, Heidelberg University]. heiDOK. https://doi.org/10.11588/heidok.00033215
Schmidt, M., Hoffrichter, A., Davoudi, M., Horschitz, S., Lau, T., Meinhardt, M., Spanagel, R., Ladewig, J., Köhr, G., & Koch, P. (2025). Psilocin fosters neuroplasticity in iPSC-derived human cortical neurons. eLife, 14, RP104006. https://doi.org/10.7554/eLife.104006.1
Sekssaoui, M., Bockaert, J., Marin, P., & Bécamel, C. (2024). Antidepressant-like effects of psychedelics in a chronic despair mouse model: Is the 5-HT2A receptor the unique player? Neuropsychopharmacology, 49(4), 747–756. https://doi.org/10.1038/s41386-024-01794-6
Shao, L.-X., Liao, C., Gregg, I., Savalia, N., Delagarza, K., & Kwan, A. C. (2021). Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. bioRxiv. https://doi.org/10.1101/2021.02.17.431629
Shao, L. X., Liao, C., Davoudian, P. A., Savalia, N. K., Jiang, Q., Wojtasiewicz, C., Tan, D., Nothnagel, J. D., Liu, R. J., Woodburn, S. C., Bilash, O. M., Kim, H., Che, A., & Kwan, A. C. (2024). Pyramidal cell types and 5-HT2A receptors are essential for psilocybin’s lasting drug action. bioRxiv. https://doi.org/10.1101/2024.11.02.621692
Vargas, M. V., Dunlap, L. E., Dong, C., Carter, S. J., Tombari, R. J., Jami, S. A., Cameron, L. P., Patel, S. D., Hennessey, J. J., Saeger, H. N., McCorvy, J. D., Gray, J. A., Tian, L., & Olson, D. E. (2023). Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science, 379(6633), 700–706. https://doi.org/10.1126/science.adf0435
Walker, E. P., & Tadi, P. (2023). Neuroanatomy, nucleus raphe. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK544359/
Werle, I., Nascimento, L. M. M., dos Santos, A. L. A., Soares, L. A., dos Santos, R. G., Hallak, J. E. C., & Bertoglio, L. J. (2024). Ayahuasca-enhanced extinction of fear behaviour: Role of infralimbic cortex 5-HT2A and 5-HT1A receptors. British Journal of Pharmacology, 181(11), 1671–1689. https://doi.org/10.1111/bph.16315
Downloads
Posted
Categories
License
Copyright (c) 2025 Alexey Fedorov

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.