Constraining the ΛCDM and wCDM Models of the Universe using Gravitational Lensing
DOI:
https://doi.org/10.58445/rars.3130Keywords:
Gravitational Lensing, ΛCDM and wCDM ModelsAbstract
We investigate late-time cosmology using a compiled sample of ≈85 galaxy-scale strong gravitational lenses,
exploiting the fact that lensing directly probes geometry through the distance ratio Dls/Ds while remaining
effectively independent of the Hubble constant H0. For each system we infer Dls/Ds from the observed
Einstein radius and stellar velocity dispersion under a standard, spherically symmetric mass description of
the lens galaxy. We then confront these measurements with the predictions of two dark-energy scenarios
in a spatially flat universe: ΛCDM (cosmological constant) and wCDM with a constant, yet free, equation-
of-state parameter w. The theoretical distance ratios are computed from the expansion history E(z) and
line-of-sight integrals between the lens and source redshifts.
Parameter estimation proceeds via a straightforward χ2 minimization built from per-lens uncertainties,
yielding (i) profiled one-dimensional likelihood curves for Ωm0 and w, and (ii) joint confidence contours
in the (Ωm0,w) plane. The resulting constraints demonstrate that strong lensing alone provides precise,
H0-independent information on the matter density and dark-energy phenomenology. In ΛCDM, the best-fit
matter density and its confidence interval are obtained from the profiled χ2 curve; in wCDM, the two-
parameter contours capture the expected degeneracy between Ωm0 and w while still delivering competitive
bounds on each.
Overall, our analysis shows that a uniform treatment of galaxy-scale lenses—linking well-measured imag-
ing and stellar kinematics to distance-ratio predictions—offers a clean and efficient route to cosmological
constraints. The framework is simple, reproducible, and readily extensible: it can incorporate alternative
lens models, larger samples, or be combined with complementary probes (e.g., supernovae, BAO, CMB) to
further sharpen constraints and test the robustness of the late-time expansion.
References
Auger, M. W., Treu, T., Bolton, A. S., et al. (2009). The Sloan Lens ACS Survey. IX. Colors,
Lensing, and Stellar Masses of Early-Type Galaxies. The Astrophysical Journal, 705(2), 1099–1115.
https://doi.org/10.1088/0004-637X/705/2/1099.
Begeman, K. G. (1989). H I rotation curves of spiral galaxies. I. NGC 3198. Astronomy & Astrophysics,
, 47–60. ADS link.
Bolton, A. S., Burles, S., Koopmans, L. V. E., et al. (2008). The Sloan Lens ACS Survey. V. The Full
ACS Strong-Lens Sample. The Astrophysical Journal, 682(2), 964–984. https://doi.org/10.1086/589327.
Gavazzi, R., Treu, T., Marshall, P. J., et al. (2014). The SL2S Galaxy-Scale Lens Sample. IV. The
Dependence of the Total Mass Density Profile of Early-Type Galaxies on Redshift, Stellar Mass, and
Size. The Astrophysical Journal, 785, 144. https://doi.org/10.1088/0004-637X/785/2/144.
Jørgensen, I., Franx, M., & Kjærgaard, P. (1995a). Multicolour CCD surface photometry for E and
S0 galaxies in 10 clusters. Monthly Notices of the Royal Astronomical Society, 273(4), 1097–1128.
https://doi.org/10.1093/mnras/273.4.1097.
Jørgensen, I., Franx, M., & Kjærgaard, P. (1995b). Spectroscopy for E and S0 galax-
ies in nine clusters. Monthly Notices of the Royal Astronomical Society, 276(4), 1341–1364.
https://doi.org/10.1093/mnras/276.4.1341.
Koopmans, L. V. E., Treu, T., Bolton, A. S., Burles, S., & Moustakas, L. A. (2006). The Sloan Lens
ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z∼1.
The Astrophysical Journal, 649(2), 599–615. https://doi.org/10.1086/505696.
Koopmans, L. V. E., Bolton, A. S., Treu, T., et al. (2009). The Structure and Formation of Early-
Type Galaxies. The Astrophysical Journal Letters, 703(1), L51–L54. https://doi.org/10.1088/0004-
X/703/1/L51.
Perlmutter, S., Aldering, G., Goldhaber, G., et al. (1999). Measurements of Ω and Λ from 42 High-
Redshift Supernovae. The Astrophysical Journal, 517(2), 565–586. https://doi.org/10.1086/307221.
Refsdal, S. (1964). On the Possibility of Determining Hubble’s Parameter and the Masses of Galaxies
from the Gravitational Lens Effect. Monthly Notices of the Royal Astronomical Society, 128(4), 307–310.
https://doi.org/10.1093/mnras/128.4.307.
Riess, A. G., Filippenko, A. V., Challis, P., et al. (1998). Observational Evidence from Supernovae for
an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116(3), 1009–1038.
https://doi.org/10.1086/300499.
Schneider, P., Ehlers, J., & Falco, E. E. (1992). Gravitational Lenses. Berlin: Springer.
https://doi.org/10.1007/978-1-4612-2756-4.
Sonnenfeld, A., Treu, T., Gavazzi, R., et al. (2013a). The SL2S Galaxy-Scale Lens Sample. I. The
Alignment of Mass and Light in Massive Early-Type Galaxies. The Astrophysical Journal, 777(2), 97.
https://doi.org/10.1088/0004-637X/777/2/97.
Sonnenfeld, A., Treu, T., Gavazzi, R., et al. (2013b). The SL2S Galaxy-Scale Lens Sample.
II. The Inner Density Profiles of Early-Type Galaxies. The Astrophysical Journal, 777(2), 98.
https://doi.org/10.1088/0004-637X/777/2/98.
Suyu, S. H., Marshall, P. J., Auger, M. W., et al. (2010). Dissecting the Gravitational Lens B1608+656.
II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation
of State. The Astrophysical Journal, 711(1), 201–221. https://doi.org/10.1088/0004-637X/711/1/201.
Treu, T., & Koopmans, L. V. E. (2002). The Internal Structure and Formation of Early-Type Galaxies:
The Gravitational Lens System MG 2016+112 at z= 1.004. The Astrophysical Journal, 575(1), 87–94.
https://doi.org/10.1086/341216.
Treu, T., & Koopmans, L. V. E. (2004). Massive Dark Matter Halos and Evolution of Early-Type
Galaxies to z∼1. The Astrophysical Journal, 611(2), 739–760. https://doi.org/10.1086/422245.
Treu, T., Koopmans, L. V. E., Bolton, A. S., Burles, S., & Moustakas, L. A. (2006). The Sloan Lens ACS
Survey. II/III. The Structure and Dynamics of Early-Type Lens Galaxies. The Astrophysical Journal,
(2), 662–677. https://doi.org/10.1086/500124.
Downloads
Posted
Categories
License
Copyright (c) 2025 Yashvardhan Marda, Dron Paul Choudhury

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.