Discovering the mass gap: Analyzing mass-gap black hole objects through gravitational waves
DOI:
https://doi.org/10.58445/rars.3074Keywords:
Astrophysics, black holes, Mass gap, Bayesian StatisticsAbstract
Mass gap objects have eluded researchers for many years, as they occupy the space between the lightest black holes and the heaviest neutron stars. The purpose of this study was to use gravitational wave analysis emitted by the process of forming these objects to gain a deeper understanding of their properties and general trends. We hypothesized that mass-gap mergers differed from other black hole mergers primarily by their chirp-mass distribution, spin, and effective spin distributions, which was partially proven correct when the chirp mass of mass gap mergers was estimated to be very different from black hole mergers. However, nested sampling and kernel density estimation revealed that the spin and effective spins of mass gap objects do not differ significantly from those of black holes, which is a fascinating result that will help further research in the future.
References
Carroll, Bradley W., and Dale A. Ostlie. An Introduction to Modern Astrophysics. Cambridge University Press, 2024.
Abbott, B. P. “Observation of Gravitational Waves from a Binary Black Hole Merger.” Centennial of General Relativity, 11 Feb. 2016, pp. 291–311, doi:10.1142/9789814699662_0011.
Abbott, B. P. “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.” Physical Review Letters, 20 Oct. 2017, doi: https://doi.org/10.1103/PhysRevLett.119.161101
Lee, Peter M. Bayesian Statistics: An Introduction. 3rd ed., Arnold; Wiley, 2004.
Massey, Frank J. “The Kolmogorov-Smirnov Test for Goodness of Fit.” Journal of the American Statistical Association, vol. 46, no. 253, 1951, pp. 68–78. JSTOR, doi: https://doi.org/10.2307/2280095. Accessed 7 Sept. 2025.
Abbot, B. P. et al. “GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4Me”. The Astrophysical Journal, 2020. Accessed 7 Sept. 2025.
Hughes, Scott A and Roger D Blanford. “Black Hole Mass and Spin Coevolution by Mergers”. The Astrophysical Journal, vol 585, no. 2nd ed., 2003. pp. 1., doi: 10.1086/375495 Accessed 7 Sept. 2025.
Scientific, L. I. G. O., et al. "Observation of Gravitational Waves from the Coalescence of a 2.5-4.5 M_sun Compact Object and a Neutron Star." Astrophysical Journal Letters (2024).
“LISA – Laser Interferometer Space Antenna – NASA Home Page” lisa.nasa.gov. Accessed 7 Sept. 2025.
Macleod, D., et al. "gwpy/gwpy." *Zenodo*, 2021, doi:10.5281/zenodo.597016.
“O3 Instrumental Lines” gwosc.org/O3/o3speclines/. Accessed 7 Sept. 2025.
“Passive Band pass Filter” www.electronics-tutorials.ws/filter/filter_4.html. Accessed 7 Sept. 2025.
“Band Stop Filter and Notch Filter” www.electronics-tutorials.ws/filter/band-stop-filter.html. Accessed 7 Sept. 2025.
Puckette, Miller. (1992). "An efficient algorithm for the calculation of a constant Q transform". Journal of the Acoustical Society of America. 92. 2698. 10.1121/1.404385.
Tierney, Luke. “Markov Chains for Exploring Posterior Distributions.” The Annals of Statistics, vol. 22, no. 4, 1994, pp. 1701–28. JSTOR, http://www.jstor.org/stable/2242477. Doi: 10.1214/aos/1176325750 Accessed 7 Sept. 2025.
Skilling, John. (2006). Skilling, J.: Nested sampling for general Bayesian computation. Bayesian Anal. 1(4), 833-860. Bayesian Analysis. 1. 833-860. 10.1214/06-BA127.
Speagle, Joshua S. "DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences." The Astrophysical Journal, vol. 876, no. 1, 2019, p. 15. Doi: https://doi.org/10.48550/arXiv.1904.02180
Ashton, G., et al. 2019, Astrophys. J. Suppl., 241, 27, doi: 10.3847/1538-4365/ab06fc
Harris, C. R., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2
The pandas development team. *pandas-dev/pandas: Pandas*. Zenodo, 2020, doi:10.5281/zenodo.3509134.
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90, doi: 10.1109/MCSE.2007.55
Veitch, J., et al. "Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library." Physical Review D, vol. 91, no. 4, 6 Feb. 2015, doi:10.1103/PhysRevD.91.042003.
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, "Open Data from LIGO, Virgo, and KAGRA through the First Part of the Fourth Observing Run", arXiv:2508.18079 -- INSPIRE
Waskom, M. L., (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021, https://doi.org/10.21105/joss.03021.
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272. DOI: 10.1038/s41592-019-0686-2.
“LIGO-Virgo Mass Plot” ligo.northwestern.edu/media/mass-plot/index.html. Accessed 7 Sept. 2025.
al, B. P. Abbot et. “GW231123: a Binary Black Hole Merger with Total Mass 190-265 M⊙”. The Astrophysical Journal, 2025. Accessed 7 Sept. 2025. DOI: https://doi.org/10.48550/arXiv.2507.08219
Downloads
Posted
Categories
License
Copyright (c) 2025 Yunshang Chen

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.