Preprint / Version 1

Mild Traumatic Brain Injury: Reviewing Current Trends in Neuroimaging & Biomarkers

##article.authors##

  • Tatiana Shvedoff N/A

DOI:

https://doi.org/10.58445/rars.3022

Keywords:

Traumatic brain injury (TBI), Mild traumatic brain injury (mTBI), Neuroimaging, Biomarkers

Abstract

Traumatic brain injury (TBI) is a major public health concern affecting millions of individuals each year, with severity ranging from mild concussions to life-threatening neurological damage. While moderate and severe TBIs often receive prompt clinical attention, mild TBI (mTBI) presents challenges due to its subtle symptoms and frequent underdiagnosis. This review examines current advances in neuroimaging and biofluid biomarkers for the detection and monitoring of mTBI. Neuroimaging techniques such as functional MRI (fMRI), electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS) are assessed for their ability to detect functional changes that are not visible on conventional imaging. Biofluid biomarkers, including glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), tau proteins, cytokines, and exosomes, are evaluated as minimally invasive indicators of neuronal injury, neuroinflammation, and blood-brain barrier disruption. Practical factors such as accessibility, cost, diagnostic windows, and technological feasibility are also discussed. Lastly, emerging tools such as digital phenotyping, wearable biosensors, and implantable devices are explored as part of a shift toward individualized and continuous monitoring. By synthesizing these developments, this review concludes that the future of mTBI care lies in a multi-modal diagnostic approach that integrates functional imaging with targeted biomarker panels, paving the way for more personalized and effective patient management.

References

Adams, S. W., O’Donovan, A., Neylan, T. C., May, V., Hammack, S. E., Ressler, K., Harris, O. A., & Inslicht, S. S. (2025). PACAP a mediator of inflammation following trauma exposure and mild traumatic brain injury: Differential effects in males and females. Brain, Behavior, and Immunity, 128, 589–599. https://doi.org/10.1016/j.bbi.2025.04.038

Amyot, F., Arciniegas, D., Brazaitis, M., Curley, K., Diaz-Arrastia, R., Gandjbakhche, A., Herscovitch, P., Hinds Ii, S., Manley, G., Pacifico, A., Razumovsky, A., Riley, J., Salzer, W., Shih, R., Smirniotopoulos, J., & Stocker, D. (2015). Full Title: A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury Authors: Corresponding Author: Anthony Pacifico, PhD Running Title: TBI Neuroimaging Modalities. https://doi.org/10.1089/neu.2013.3306

Artinis Medical Systems | (f)NIRS devices. (2024, April 17). Artinis Medical Systems | (F)NIRS Devices. https://www.artinis.com/blogpost-all/measuring-brain-activity-during-performance-of-a-collaborative-ping-pong-task-a-fnirs-study-during-movement

Ayala‐Mar, S., Donoso‐Quezada, J., Gallo‐Villanueva, R. C., Perez‐Gonzalez, V. H., & González‐Valdez, J. (2019). Recent advances and challenges in the recovery and purification of cellular exosomes. ELECTROPHORESIS, 40(23-24), 3036–3049. https://doi.org/10.1002/elps.201800526

Bruns, J., & Hauser, W. A. (2003). The Epidemiology of Traumatic Brain Injury: A Review. Epilepsia, 44(s10), 2–10. https://doi.org/10.1046/j.1528-1157.44.s10.3.x

Carlson, K., Kehle, S., Meis, L., Greer, N., MacDonald, R., Rutks, I., & Wilt, T. J. (2009, August 1). [Table], Comparison of Mild TBI with Moderate and Severe TBI*. Www.ncbi.nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK49142/table/introduction.tu1/

Chang, F., Li, H., Li, N., Zhang, S., Liu, C., Zhang, Q., & Cai, W.-X. (2022). Functional near-infrared spectroscopy as a potential objective evaluation technique in neurocognitive disorders after traumatic brain injury. Frontiers in Psychiatry, 13. https://doi.org/10.3389/fpsyt.2022.903756.

Concussion | Mayfield Brain & Spine, Cincinnati, Ohio. (n.d.). Retrieved June 23, 2025, from https://mayfieldclinic.com/pe-concussion.htm

de Jager, W., Bourcier, K., Rijkers, G. T., Prakken, B. J., & Seyfert-Margolis, V. (2009). Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunology, 10(1), 52. https://doi.org/10.1186/1471-2172-10-52

de la Torre Gomez, C., Goreham, R. V., Bech Serra, J. J., Nann, T., & Kussmann, M. (2018). “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Frontiers in Genetics, 9. https://doi.org/10.3389/fgene.2018.00092

Dennis, E. L., Keleher, F., Tate, D. F., & Wilde, E. A. (2023). The Role of Neuroimaging in Evolving TBI Research and Clinical Practice. MedRxiv: The Preprint Server for Health Sciences, 2023.02.24.23286258. https://doi.org/10.1101/2023.02.24.23286258

Farnsworth, B. (2019, July 17). EEG Headset Prices – An Overview of 15+ EEG Devices. IMotions. https://imotions.com/blog/learning/product-guides/eeg-headset-prices/?srsltid=AfmBOoqNuHOcr48L14MgULJlegowyiXHxxmLfEFHj2-3gUOz-P-MOPDd#best-eeg-headsets-by-price-range-and-features

Faul, M., & Coronado, V. (2015, January 1). Chapter 1 - Epidemiology of traumatic brain injury (J. Grafman & A. M. Salazar, Eds.). ScienceDirect; Elsevier. https://www.sciencedirect.com/science/article/abs/pii/B9780444528926000015

Functional MRI (fMRI). (2019). Mdsave.com. https://www.mdsave.com/procedures/functional-mri-fmri/d584f5cc

Ghadimi, M., & Sapra, A. (2023, May 1). Magnetic Resonance Imaging Contraindications. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551669/

Ghaith, H. S., Nawar, A. A., Gabra, M. D., Abdelrahman, M. E., Nafady, M. H., Bahbah, E. I., Ebada, M. A., Ashraf, G. M., Negida, A., & Barreto, G. E. (2022). A Literature Review of Traumatic Brain Injury Biomarkers. Molecular Neurobiology, 59. https://doi.org/10.1007/s12035-022-02822-6

Goetzl, E. J., Elahi, F. M., Maja Mustapić, Dimitrios Kapogiannis, Pryhoda, M. K., Gilmore, A., Gorgens, K. A., Davidson, B. S., Granholm, A.-C., & Aurélie Ledreux. (2019). Altered levels of plasma neuron‐derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. The FASEB Journal, 33(4), 5082–5088. https://doi.org/10.1096/fj.201802319r

Hayes, J. P., Bigler, E. D., & Verfaellie, M. (2016). Traumatic Brain Injury as a Disorder of Brain Connectivity. Journal of the International Neuropsychological Society, 22(2), 120–137. https://doi.org/10.1017/S1355617715000740

HD-X AnalyzerTM fully automated Simoa bead-based immunoassay platform. (2025). Quanterix. https://www.quanterix.com/instruments/simoa-hd-x-analyzer/

Hepner, A., Porter, J., Hare, F., Nasir, S. S., Zetterberg, H., Kaj Blennow, & Martin, M. G. (2019). Serum Neurofilament Light, Glial Fibrillary Acidic Protein and Tau Are Possible Serum Biomarkers for Activity of Brain Metastases and Gliomas. World Journal of Oncology, 10(4-5), 169–175. https://doi.org/10.4021/wjon.v10i4-5.1228

Hossain, I., Blennow, K., Posti, J., & Zetterberg, H. (Eds.). (2022, November 1). Tau as a fluid biomarker of concussion and neurodegeneration. Europe PMC. https://europepmc.org/article/MED/36687115

​​How Much Does an EEG Cost? (2013). CostHelper. https://health.costhelper.com/eeg.html

Ianof, J. N., & Anghinah, R. (2017). Traumatic brain injury: An EEG point of view. Dementia & Neuropsychologia, 11(1), 3–5. https://doi.org/10.1590/1980-57642016dn11-010002

Kenney, K., Qu, B.-X., Lai, C., Devoto, C., Motamedi, V., Walker, W. C., Levin, H. S., Nolen, T., Wilde, E. A., Diaz-Arrastia, R., & Gill, J. (2018). Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury. Brain Injury, 32(10), 1276–1284. https://doi.org/10.1080/02699052.2018.1483530

Kernel | Products. (2025). Kernel.com. https://www.kernel.com/products

Kim, J., Campbell, A. S., de Ávila, B. E.-F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology, 37(4), 389–406. https://doi.org/10.1038/s41587-019-0045-y

Ladak, A. A., Enam, S. A., & Ibrahim, M. T. (2019). A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurgery, 131, 126–132. https://doi.org/10.1016/j.wneu.2019.07.039

Leo, P., & McCrea, M. (2016). Translational Research in Traumatic Brain Injury (D. Laskowitz & G. Grant, Eds.). PubMed; CRC Press/Taylor and Francis Group. https://www.ncbi.nlm.nih.gov/books/NBK326730/

Liga, A., Vliegenthart, A. D. B., Oosthuyzen, W., Dear, J. W., & Kersaudy-Kerhoas, M. (2015). Exosome isolation: a microfluidic road-map. Lab Chip, 15(11), 2388–2394. https://doi.org/10.1039/c5lc00240k

Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835. https://doi.org/10.1002/hbm.21151

Middleton, J. (2022). UCH-L1 and GFAP Testing (i-STAT TBI Plasma) for the Detection of Intracranial Injury Following Mild Traumatic Brain Injury. American Family Physician, 105(3), 313–314. https://www.aafp.org/pubs/afp/issues/2022/0300/p313.html

Papa, L., Brophy, G. M., Welch, R. D., Lewis, L. M., Braga, C. F., Tan, C. N., Ameli, N. J., Lopez, M. A., Haeussler, C. A., Mendez Giordano, D. I., Silvestri, S., Giordano, P., Weber, K. D., Hill-Pryor, C., & Hack, D. C. (2016). Time Course and Diagnostic Accuracy of Glial and Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients With and Without Mild Traumatic Brain Injury. JAMA Neurology, 73(5), 551. https://doi.org/10.1001/jamaneurol.2016.0039

Plenger, P., Krishnan, K., Cloud, M., Bosworth, C., Qualls, D., & Marquez de la Plata, C. (2015). fNIRS-based investigation of the Stroop task after TBI. Brain Imaging and Behavior, 10(2), 357–366. https://doi.org/10.1007/s11682-015-9401-9

Rabinowitz, A. R., & Levin, H. S. (2014). Cognitive Sequelae of Traumatic Brain Injury. Psychiatric Clinics of North America, 37(1), 1–11. https://doi.org/10.1016/j.psc.2013.11.004

Rahmina Rubaiat, Templeton, J. M., Schneider, S. L., Silva, U. D., Madanian, S., & Poellabauer, C. (2025). Exploring Speech Biosignatures for Traumatic Brain Injury and Neurodegeneration: A Pilot Machine Learning Study (Preprint). JMIR Neurotechnology, 4. https://doi.org/10.2196/64624

Reitz, S. (2014b, January 9). fMRI Machine Will Expand Research Capabilities. UConn Today. https://today.uconn.edu/2014/01/fmri-machine-will-expand-research-capabilities/

Reyes, J., Spitz, G., Major, B. P., O'Brien, W. T., Giesler, L. P., Bain, J. W. P., Xie, B., Rosenfeld, J. V., Law, M., Ponsford, J. L., O'Brien, T. J., Shultz, S. R., Willmott, C., Mitra, B., & McDonald, S. J. (2023). Utility of Acute and Subacute Blood Biomarkers to Assist Diagnosis in CT-Negative Isolated Mild Traumatic Brain Injury. Neurology, 101(20), e1992–e2004. https://doi.org/10.1212/WNL.0000000000207881

Schultz, L. S., Murphy, M. A., Donegan, M., Knights, J., Baker, J. T., Thompson, M. F., Waters, A. J., Roy, M., & Gray, J. C. (2025). Evaluating the Acceptability and Feasibility of Collecting Passive Smartphone Data to Estimate Psychological Functioning in U.S. Service Members and Veterans: A Pilot Study. Military Medicine, 190(1-2), 285–292. https://doi.org/10.1093/milmed/usae144

Seo. (2024b, January 21). EEG 64 channel - ScienceBeam. ScienceBeam. https://sciencebeam.com/eeg-64-channel/

Seo, D., Neely, R. M., Shen, K., Singhal, U., Alon, E., Rabaey, J. M., Carmena, J. M., & Maharbiz, M. M. (2016). Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust. Neuron, 91(3), 529–539. https://doi.org/10.1016/j.neuron.2016.06.034

Skau, S., Bunketorp-Käll, L., Kuhn, H. G., & Johansson, B. (2019). Mental Fatigue and Functional Near-Infrared Spectroscopy (fNIRS) – Based Assessment of Cognitive Performance After Mild Traumatic Brain Injury. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00145

​​Tau in Alzheimer’s disease fact sheet – Bristol Myers Squibb. (2024, November 11). Bms.com; Bristol Myers Squibb. https://www.bms.com/media/media-library/scientific-media-resources/tau-alzheimers-disease-fact-sheet.html

Wang, K. K. W., Kobeissy, F. H., Shakkour, Z., & Tyndall, J. A. (2021). Thorough overview of ubiquitin C‐terminal hydrolase‐L1 and glial fibrillary acidic protein as tandem biomarkers recently cleared by US Food and Drug Administration for the evaluation of intracranial injuries among patients with traumatic brain injury. Acute Medicine & Surgery, 8(1). https://doi.org/10.1002/ams2.622

Zetterberg, H., & Blennow, K. (2016). Fluid biomarkers for mild traumatic brain injury and related conditions. Nature Reviews Neurology, 12(10), 563–574. https://doi.org/10.1038/nrneurol.2016.127

Downloads

Posted

2025-09-06

Categories