The Role of RECQL4 Overexpression in Gene Regulation and Cancer Development: Implications of Effective Targeted Therapy
DOI:
https://doi.org/10.58445/rars.3017Keywords:
RECQL4, Cancer Prognosis, RT-qPCR, Western Blotting, Wound Healing Assay, Flow Cytometry, Drug ResistanceAbstract
The RECQL4 gene is located on human chromosome 8 and codes for a homonymous helicase. This gene plays a crucial role in DNA repair, replication, and recombination. Specifically, the coded enzyme participates in a wide variety of DNA repair pathways and preserves its structural integrity. However, such protective functions are often compromised by RECQL4 upregulation, which is potentially caused by mutation-induced gene amplification and deregulation. An overexpression of the RECQL4 gene leads to increases in cell proliferation and genomic instability and is highly correlated to cancer progression. Due to RECQL4 overexpression across multiple tumor types, the present study proposes that such a phenomenon has the ability to serve as a measure of cancer prognosis. To test this hypothesis, the level of RECQL4 expression across three types of cancer cell samples (HCC cells, breast and ovarian cancer cells) were measured via reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and RECQL4 helicase abundance was assessed via western blotting. In addition, the RECQL4 genes within half of the cell samples were temporarily silenced, and the samples were analyzed via wound-healing assay to assess the effect of reduced RECQL4 activity on the cancer cells’ self-repair mechanisms and invasiveness. The cell cycle of RECQL4-inhibited cells were then compared with original samples via flow cytometry. Lastly, the risk scores and IC50 values of sorafenib, doxorubicin, and cisplatin are then evaluated to determine the impact of RECQL4 inhibition on responsiveness of cancer cells to current treatments. Overall, the study revealed an unusually high level of RECQL4 expression in all three types of cancer cells, showed a decrease in the invasiveness of cells with an inhibited RECQL4 gene, and discovered an unexpected relationship between RECQL4 overexpression and drug resistance.
References
Kellermayer, R. The versatile RECQL4. Genetics in Medicine, 8(4), 213–216. https://doi.org/10.1097/01.gim.0000214457.58378.1a (2006).
Kaiser, S., Sauer, F., & Kisker, C. The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism. Nature Communications, 8, 15907. https://doi.org/10.1038/ncomms15907 (2017).
Luong, T. T., & Bernstein, K. A. Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes, 12(12), 1919. https://doi.org/10.3390/genes12121919 (2021).
Xu, X., Chang, C.-W., Li, M., Omabe, K., Le, N., Chen, Y.-H., Liang, F., & Liu, Y. DNA replication initiation factor RECQ4 possesses a role in antagonizing DNA replication initiation. Nature Communications, 14(1), 1233. https://doi.org/10.1038/s41467-023-36968-1 (2023).
Ghosh, A. K., Rossi, M. L., Singh, D. K., Dunn, C., Ramamoorthy, M., Croteau, D. L., Liu, Y., & Bohr, V. A. RECQL4, the Protein Mutated in Rothmund-Thomson Syndrome, Functions in Telomere Maintenance*. Journal of Biological Chemistry, 287(1), 196–209. https://doi.org/10.1074/jbc.m111.295063 (2012).
Aparicio, T., Baer, R., & Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA Repair, 19, 169–175. https://doi.org/10.1016/j.dnarep.2014.03.014 (2014).
Lu, H., Shamanna, R. A., Keijzers, G., Anand, R., Rasmussen, L. J., Cejka, P., Croteau, D. L., & Bohr, V. A. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks. Cell Reports, 16(1), 161–173. https://doi.org/10.1016/j.celrep.2016.05.079 (2016).
Qiu, S., Cai, J., Yang, Z., He, X., Xing, Z., Zu, J., Xie, E., Henry, L., Chong, C. R., John, E. M., Cheung, R., Ji, F., & Nguyen, M. H. Trends in Hepatocellular Carcinoma Mortality Rates in the US and Projections Through 2040. JAMA Network Open, 7(11), e2445525–e2445525. https://doi.org/10.1001/jamanetworkopen.2024.45525 (2024).
Tunissiolli, N. M., Castanhole-Nunes, M. M. U., Biselli-Chicote, P. M., Pavarino, É. C., da Silva, R. F., da Silva, R. de C. M. A., & Goloni-Bertollo, E. M. Hepatocellular Carcinoma: a Comprehensive Review of Biomarkers, Clinical Aspects, and Therapy. Asian Pacific Journal of Cancer Prevention : APJCP, 18(4), 863–872. https://doi.org/10.22034/APJCP.2017.18.4.863 (2017).
Tang, W., Chen, Z., Zhang, W., Cheng, Y., Zhang, B., Wu, F., Wang, Q., Wang, S., Rong, D., Reiter, F. P., De Toni, E. N., & Wang, X. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduction and Targeted Therapy, 5(1), 1–15. https://doi.org/10.1038/s41392-020-0187-x (2020).
Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanislawek, A. Breast cancer—epidemiology, Risk factors, classification, Prognostic markers, and Current Treatment Strategies—an Updated Review. Cancers, 13(17), 4287. https://pmc.ncbi.nlm.nih.gov/articles/PMC8428369/ (2021).
Kciuk, M., Gielecińska, A., Mujwar, S., Kołat, D., Kałuzińska, Ż., Celik, I., & Kontek, R. Doxorubicin—An agent with multiple mechanisms of anticancer activity. Cells, 12(4), 659–659. https://doi.org/10.3390/cells12040659 (2023).
Mellor, P., Kendall, S., Smith, S., Saxena, A., & Anderson, D. H. Reduced CREB3L1 expression in triple negative and luminal a breast cancer cells contributes to enhanced cell migration, anchorage-independent growth and metastasis. PLoS ONE, 17(7), e0271090–e0271090. https://doi.org/10.1371/journal.pone.0271090 (2022).
Chen, N.-N., Ma, X.-D., Miao, Z., Zhang, X.-M., Han, B.-Y., Ahmed Ali Almaamari, Huang, J.-M., Chen, X.-Y., Liu, Y.-J., & Su, S.-W. Doxorubicin resistance in breast cancer is mediated via the activation of FABP5/PPARγ and CaMKII signaling pathway. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1150861 (2023).
Yeung, T.-L., Leung, C. S., Yip, K.-P., Au Yeung, C. L., Wong, S. T. C., & Mok, S. C. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. American Journal of Physiology-Cell Physiology, 309(7), C444–C456. https://doi.org/10.1152/ajpcell.00188.2015 (2015).
Zoń, A., & Bednarek, I. Cisplatin in Ovarian Cancer Treatment—Known Limitations in Therapy Force New Solutions. International Journal of Molecular Sciences, 24(8), 7585. https://doi.org/10.3390/ijms24087585 (2023).
Gong, T.-T., Liu, F.-H., Xiao, Q., Li, Y.-Z., Wei, Y.-F., Xu, H.-L., Cao, F., Sun, M.-L., Jiang, F.-L., Tao, T., Ma, Q.-P., Qin, X., Song, Y., Gao, S., Wu, L., Zhao, Y.-H., Huang, D.-H., & Wu, Q.-J. SH3RF2 contributes to cisplatin resistance in ovarian cancer cells by promoting RBPMS degradation. Communications Biology, 7(1). https://doi.org/10.1038/s42003-023-05721-1 (2024).
Matsui, A., Ihara, T., Suda, H., Mikami, H., & Semba, K. Gene amplification: mechanisms and involvement in cancer. BioMolecular Concepts, 4(6), 567–582. https://doi.org/10.1515/bmc-2013-0026 (2013).
Arora, A., Agarwal, D., Abdel-Fatah, T. M., Lu, H., Croteau, D. L., Moseley, P., Aleskandarany, M. A., Green, A. R., Ball, G., Rakha, E. A., Chan, S. Y., Ellis, I. O., Wang, L. L., Zhao, Y., Balajee, A. S., Bohr, V. A., & Madhusudan, S. RECQL4 helicase has oncogenic potential in sporadic breast cancers. The Journal of Pathology, 238(4), 495–501. https://doi.org/10.1002/path.4681 (2016).
Li, Y., Yin, L., Liu, B., Liu, Y., He, D., Liu, X., & Liu, R. Targeting RECQL4 in hepatocellular carcinoma: from prognosis to therapeutic potential. BMC Medical Genomics, 18(1). https://doi.org/10.1186/s12920-025-02107-6 (2025).
Li, J., Jin, J., Liao, M., Dang, W., Chen, X., Wu, Y., & Liao, W. Upregulation of RECQL4 expression predicts poor prognosis in hepatocellular carcinoma. Oncology Letters. https://doi.org/10.3892/ol.2018.7860 (2018).
Maity, J., Horibata, S., Zurcher, G., & Lee, J.-M. Targeting of RecQ Helicases as a Novel Therapeutic Strategy for Ovarian Cancer. Cancers, 14(5), 1219. https://doi.org/10.3390/cancers14051219 (2022).
Guo, L., Li, Y., Zhao, C., Peng, J., Song, K., Chen, L., Zhang, P., Ma, H., Yuan, C., Yan, S., Fang, Y., & Kong, B. RECQL4, Negatively Regulated by miR-10a-5p, Facilitates Cell Proliferation and Invasion via MAFB in Ovarian Cancer. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.524128 (2020).
Zhu, X., Chen, H., Yang, Y., Xu, C., Zhou, J., Zhou, J., & Chen, Y. Distinct prognosis of mRNA expression of the five RecQ DNA-helicase family members – RECQL, BLM, WRN, RECQL4, and RECQL5 – in patients with breast cancer. Cancer Management and Research, Volume 10, 6649–6668. https://doi.org/10.2147/cmar.s185769 (2018).
Hong, W., Zhang, Y., Li, Z., Zeng, Z., & Du, S. RECQL4 Remodels the Tumor Immune Microenvironment via the cGAS-STING Pathway in Hepatocellular Carcinoma. International Journal of Radiation Oncology*Biology*Physics, 114(3), e509–e510. https://doi.org/10.1016/j.ijrobp.2022.07.2081 (2018).
Huo, W., Huang, Y., Tian, B., Chen, X., Lu, J., Huang, X., Wu, M., Yu, J., Chen, D., & Wang, R. Unraveling the mechanisms of RECQL4-mediated cervical cancer progression through the PI3K/AKT pathway. Translational Oncology, 50, 102146–102146. https://doi.org/10.1016/j.tranon.2024.102146 (2024).
Downloads
Posted
Categories
License
Copyright (c) 2025 Mengyao Li

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.