Exploiting Reactive Oxygen Species in Cancer Therapy
Opportunities and Challenges
DOI:
https://doi.org/10.58445/rars.3012Keywords:
ROS, Chemistry, Biology, Biochemistry, Cancer, CellsAbstract
Reactive oxygen species are compounds containing oxygen atoms with an unpaired electron, making them highly reactive. These substances are generated during the electron transport chain as a byproduct within the mitochondria, along with other cellular processes that involve proteins like NADPH oxidase. In the mitochondria, the electron transport chain is used to produce ATP through Complexes I-IV and the ATP synthase. About 0.2%-2% of electrons in the electron transport chain leak out and interact with oxygen, producing ROS. Most ROS produced in the electron transport chain are produced at Complex I, and Complexes II-IV produces negligible amounts compared to those at Complex I. It is crucial ROS are produced in proper concentrations at these complexes for cell survival because they serve as messengers within the cell and help manage various cellular functions, such as gene expression, cell division, cell differentiation, and the response to stress. They can influence pathways like growth-factor signaling pathways and mitogenic pathways, and both help stimulate cell division, growth differentiation, and survival. As a redox signaling messenger, ROS can cause reversible modifications to biomolecules in the cell but become dangerous when they bind to the cell’s macromolecules, DNA, lipids, and proteins, and lead to the formation of cancer.
References
Zhao, R.-Z.; Jiang, S.; Zhang, L.; Yu, Z.-B. Mitochondrial Electron Transport Chain, ROS Generation and Uncoupling (Review). Int. J. Mol. Med. 2019, 44 (1), 3–15. https://doi.org/10.3892/ijmm.2019.4188.
Kuo, C.-L.; Ponneri Babuharisankar, A.; Lin, Y.-C.; Lien, H.-W.; Lo, Y. K.; Chou, H.-Y.; Tangeda, V.; Cheng, L.-C.; Cheng, A. N.; Lee, A. Y.-L. Mitochondrial Oxidative Stress in the Tumor Microenvironment and Cancer Immunoescape: Foe or Friend? J. Biomed. Sci. 2022, 29, 74. https://doi.org/10.1186/s12929-022-00859-2.
Li, T. Y.; Lin, S.-Y.; Lin, S.-C. Mechanism and Physiological Significance of Growth Factor-Related Autophagy. Physiology 2013, 28 (6), 423–431. https://doi.org/10.1152/physiol.00023.2013.
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Extracellular Control of Cell Division, Cell Growth, and Apoptosis. In Molecular Biology of the Cell. 4th edition; Garland Science, 2002.
Palma, F. R.; Gantner, B. N.; Sakiyama, M. J.; Kayzuka, C.; Shukla, S.; Lacchini, R.; Cunniff, B.; Bonini, M. G. ROS Production by Mitochondria: Function or Dysfunction? Oncogene 2024, 43 (5), 295–303. https://doi.org/10.1038/s41388-023-02907-z.
Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in Cancer Therapy: The Bright Side of the Moon. Exp. Mol. Med. 2020, 52 (2), 192–203. https://doi.org/10.1038/s12276-020-0384-2.
Cooke, M. S.; Evans, M. D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA Damage: Mechanisms, Mutation, and Disease. FASEB J. 2003, 17 (10), 1195–1214. https://doi.org/10.1096/fj.02-0752rev
Gerstberger, S.; Jiang, Q.; Ganesh, K. Metastasis. Cell 2023, 186 (8), 1564–1579. https://doi.org/10.1016/j.cell.2023.03.003.
Han, L.; Cavazos, A.; Baran, N.; Zhang, Q.; Kuruvilla, V. M.; Gay, J. P.; Feng, N.; Battula, V. L.; Kantarjian, H. M.; Daver, N. G.; Marszalek, J. R.; Andreeff, M.; Konopleva, M. Y. Mitochondrial Oxphos As Survival Mechanism of Minimal Residual AML Cells after Induction Chemotherapy : Survival Benefit By Complex I Inhibition with Iacs-010759. Blood 2019, 134, 5161. https://doi.org/10.1182/blood-2019-124475.
Yap, T. A.; Rodon Ahnert, J.; Piha-Paul, S. A.; Fu, S.; Janku, F.; Karp, D. D.; Naing, A.; Ileana Dumbrava, E. E.; Pant, S.; Subbiah, V.; Tsimberidou, A. M.; Hong, D. S.; Rose, K. M.; Xu, Q.; Vellano, C. P.; Mahendra, M.; Jones, P.; Di Francesco, M. E.; Marszalek, J. R.; Meric-Bernstam, F. Phase I Trial of IACS-010759 (IACS), a Potent, Selective Inhibitor of Complex I of the Mitochondrial Electron Transport Chain, in Patients (Pts) with Advanced Solid Tumors. J. Clin. Oncol. 2019, 37 (15_suppl), 3014–3014. https://doi.org/10.1200/JCO.2019.37.15_suppl.3014.
PubChem. Vlx-600. https://pubchem.ncbi.nlm.nih.gov/compound/6410104 (accessed 2025-05-10).
Jakobsson, A. W.; Kundu, S.; Guo, J.; Chowdhury, A.; Zhao, M.; Lindell, E.; Bergsten, P.; Swartling, F. J.; Sjöblom, T.; Zhang, X. Iron Chelator VLX600 Inhibits Mitochondrial Respiration and Promotes Sensitization of Neuroblastoma Cells in Nutrition-Restricted Conditions. Cancers 2022, 14 (13), 3225. https://doi.org/10.3390/cancers14133225.
Wu, D.; Jin ,Lili; Huang ,Xing; Deng ,Hao; Shen ,Qing-kun; Quan ,Zhe-shan; Zhang ,Changhao; and Guo, H.-Y. Arctigenin: Pharmacology, Total Synthesis, and Progress in Structure Modification. J. Enzyme Inhib. Med. Chem. 2022, 37 (1), 2452–2477. https://doi.org/10.1080/14756366.2022.2115035.
Ikeda, M.; Sato, A.; Mochizuki, N.; Toyosaki, K.; Miyoshi, C.; Fujioka, R.; Mitsunaga, S.; Ohno, I.; Hashimoto, Y.; Takahashi, H.; Hasegawa, H.; Nomura, S.; Takahashi, R.; Yomoda, S.; Tsuchihara, K.; Kishino, S.; Esumi, H. Phase I Trial of GBS‐01 for Advanced Pancreatic Cancer Refractory to Gemcitabine. Cancer Sci. 2016, 107 (12), 1818–1824. https://doi.org/10.1111/cas.13086.
Downloads
Posted
Categories
License
Copyright (c) 2025 Angelina Huang

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.