Harnessing Ferroptosis in PDAC: Curcumin Enhances RSL3-Induced Lipid Peroxidation and Cytotoxicity
DOI:
https://doi.org/10.58445/rars.2928Keywords:
PDAC, Ferroptosis, Cancer Therapy, Cancer Biology, Pancreatic Cancer, Cancer Treatment, Drug Combination, Curcumin, RSL-3, Ferrostatin-1Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that remains without an effective treatment and characterized by its resistance to conventional therapies and evasion of programmed cell death pathways. This study investigates a combinatorial therapeutic approach using curcumin, a natural ingredient with antioxidant properties, and RSL3, a ferroptosis inducer that inhibits GPX4 of the ASCL4 pathway. Mouse PDAC cells were treated with curcumin, RSL3, and Ferrostatin-1 both individually and in combination to determine their half-maximal inhibitory concentrations (IC50) and evaluate synergistic effects on cell viability. The IC50 of curcumin was found to be about 50 µM meanwhile for RSL3 it was about 0.5 µM. Dose-response assays revealed a possible enhanced cytotoxicity in combinatorial treatments compared to monotherapy, particularly with curcumin and RSL3. ROS staining using DCFH-DA was performed to visualize oxidative stress to physically see the ASCL4 pathway, although fixed-cell imaging introduced an unexpected result where a green-fluorescent ROS stain turned into a red nucleolus stain. Despite limitations including single-trial IC50 determinations and possible pipetting errors, our results suggest that curcumin primes PDAC cells for ferroptotic death enhancing RSL3 efficacy. These findings highlight the therapeutic potential of natural-drug combinations to treat PDAC.
References
Al-Lazikani, B., Banerji, U., & Workman, P. (2012). Combinatorial drug therapy for cancer in the post-genomic era. Nature biotechnology, 30(7), 679–692. https://doi.org/10.1038/nbt.2284
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, 2014, 360438. https://doi.org/10.1155/2014/360438
Díaz Osterman, C. J., Gonda, A., Stiff, T., Sigaran, U., Valenzuela, M. M., Ferguson Bennit, H. R., Moyron, R. B., Khan, S., & Wall, N. R. (2016). Curcumin Induces Pancreatic Adenocarcinoma Cell Death Via Reduction of the Inhibitors of Apoptosis. Pancreas, 45(1), 101–109. https://doi.org/10.1097/MPA.0000000000000411
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd, & Stockwell, B. R. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
Gorrini, C., & Mak, T. W. (2019). Glutathione Metabolism: An Achilles' Heel of ARID1A-Deficient Tumors. Cancer cell, 35(2), 161–163. https://doi.org/10.1016/j.ccell.2019.01.017
Guo, Z., Zhuang, H., & Shi, X. (2024). Therapeutic efficacy of ferroptosis in the treatment of colorectal cancer (Review). Oncology letters, 28(6), 563. https://doi.org/10.3892/ol.2024.14697
Jiang, Y., Hui, D., Pan, Z. et al. Curcumin promotes ferroptosis in hepatocellular carcinoma via upregulation of ACSL4. J Cancer Res Clin Oncol 150, 429 (2024). https://doi.org/10.1007/s00432-024-05878-0
Kim, H., & Xue, X. (2020). Detection of Total Reactive Oxygen Species in Adherent Cells by 2',7'-Dichlorodihydrofluorescein Diacetate Staining. Journal of visualized experiments : JoVE, (160), 10.3791/60682. https://doi.org/10.3791/60682
Lopez-Blazquez, C., Lacalle-Gonzalez, C., Sanz-Criado, L., Ochieng' Otieno, M., Garcia-Foncillas, J., & Martinez-Useros, J. (2023). Iron-Dependent Cell Death: A New Treatment Approach against Pancreatic Ductal Adenocarcinoma. International journal of molecular sciences, 24(19), 14979. https://doi.org/10.3390/ijms241914979
Perera, L., Brown, S. M., Silver, B. B., Tokar, E. J., & Sinha, B. K. (2025). Ferroptosis Inducers Erastin and RSL3 Enhance Adriamycin and Topotecan Sensitivity in ABCB1/ABCG2-Expressing Tumor Cells. International Journal of Molecular Sciences, 26(2), 635. https://doi.org/10.3390/ijms26020635
Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A. G., & Karamouzis, M. V. (2020). Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World journal of gastrointestinal oncology, 12(2), 173–181. https://doi.org/10.4251/wjgo.v12.i2.173
Shen, W. J., Hsieh, C. Y., Chen, C. L., Yang, K. C., Ma, C. T., Choi, P. C., & Lin, C. F. (2013). A modified fixed staining method for the simultaneous measurement of reactive oxygen species and oxidative responses. Biochemical and biophysical research communications, 430(1), 442–447. https://doi.org/10.1016/j.bbrc.2012.11.037
Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: a cancer journal for clinicians, 74(1), 12–49. https://doi.org/10.3322/caac.21820
Stoffel, E. M., Brand, R. E., & Goggins, M. (2023). Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology, 164(5), 752–765. https://doi.org/10.1053/j.gastro.2023.02.012
Sui, X., Zhang, R., Liu, S., Duan, T., Zhai, L., Zhang, M., Han, X., Xiang, Y., Huang, X., Lin, H., & Xie, T. (2018). RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Frontiers in pharmacology, 9, 1371. https://doi.org/10.3389/fphar.2018.01371
Sun, S., Shen, J., Jiang, J. et al. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Sig Transduct Target Ther 8, 372 (2023). https://doi.org/10.1038/s41392-023-01606-1
Tang, X., Ding, H., Liang, M., Chen, X., Yan, Y., Wan, N., Chen, Q., Zhang, J., & Cao, J. (2021). Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thoracic Cancer, 12(8), 1219–1230. https://doi.org/10.1111/1759-7714.13904
Valsecchi, M.E., Díaz-Cantón, E., de la Vega, M. et al. Recent Treatment Advances and Novel Therapies in Pancreas Cancer: A Review. J Gastrointest Canc 45, 190–201 (2014). https://doi.org/10.1007/s12029-013-9561-z
Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L., & Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1-2), 317– 331. https://doi.org/10.1016/j.cell.2013.12.010
Yesilkanal, A. E., Johnson, G. L., Ramos, A. F., & Rosner, M. R. (2021). New strategies for targeting kinase networks in cancer. The Journal of biological chemistry, 297(4), 101128. https://doi.org/10.1016/j.jbc.2021.101128
Yuan, J., Liu, C., Jiang, C., Liu, N., Yang, Z., & Xing, H. (2025). RSL3 induces ferroptosis by activating the NF-κB signalling pathway to enhance the chemosensitivity of triple-negative breast cancer cells to paclitaxel. Scientific reports, 15(1), 1654. https://doi.org/10.1038/s41598-025-85774-w
Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in Diagnosis of Pancreatic Cancer. World J. Gastroenterol. 2018, 24 (19), 2047–2060. https://doi.org/10.3748/wjg.v24.i19.2047
Zhou, Q., Meng, Y., Li, D. et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Sig Transduct Target Ther 9, 55 (2024). https://doi.org/10.1038/s41392-024-01769-5
Downloads
Posted
Categories
License
Copyright (c) 2025 Jonathan Song, Johnny Yi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.