Analysis of Active Galactic Nuclei Feedback in Cosmological Simulations: IllustrisTNG and EAGLE
DOI:
https://doi.org/10.58445/rars.2878Keywords:
Active Galactic Nuclei, Cosmological Simulation, EAGLE, IllustrisTNG, AGN Feedback, Galactic EvolutionAbstract
Active Galactic Nuclei (AGN) are compact and energetic regions at the centers of galaxies powered by accretion onto a supermassive black hole which emit energy across the electromagnetic spectrum. AGNs alter their host galaxies by releasing large outflows of radiation and ionized gas which impacts a variety of host galaxy properties including star formation rates, gas cooling rates, mass distribution, velocity dispersion, and luminosity. This paper presents a comprehensive overview of the mechanisms by which AGNs affect their host galaxies, with an emphasis on their implementation within cosmological simulations. It reviews the underlying physical processes, theoretical models, and observational detection methods, emphasizing how AGN impacts the ISM, drives multiphase gas outflows, and quenches star formation. To explore these effects in practice, this paper analyzes two cosmological simulations that incorporate AGN feedback: IllustrisTNG and EAGLE. Using python scripts, this paper analyzes the publicly released data from the IllustrisTNG and EAGLE data repositories, analyzing trends within black hole mass and AGN luminosity. Galaxies within this analysis are categorized into either AGN or non-AGN galaxies depending on their eddington ratio. This study found black hole mass to be the strongest predictor of AGN activity in both simulations, while AGN luminosity showed weaker correlation. Understanding the interactions between AGNs and their host galaxies is essential for building accurate simulations of galactic evolution.
References
Barkana, R., Tsujikawa, S., & Kim, J. (2018). Encyclopedia Of Cosmology, The (In 4 Volumes) (G. Fazio & K. Nagamine, Eds.; 2nd ed., Vol. 2, pp. 61–101). World Scientific.
Benson, A. J. (2005). AGN and the necessity of feedback. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 363(1828), 695–704. https://doi.org/10.1098/rsta.2004.1519
Blandford, R., Meier, D., & Readhead, A. (2019). Relativistic Jets from Active Galactic Nuclei. Annual Review of Astronomy and Astrophysics, 57(1), 467–509. https://doi.org/10.1146/annurev-astro-081817-051948
Booth, C. M., & Schaye, J. (2009). Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: Method and tests. Monthly Notices of the Royal Astronomical Society, 398(1), 53–74. https://doi.org/10.1111/j.1365-2966.2009.15043.x
Edgar, R. (2004). A review of Bondi–Hoyle–Lyttleton accretion. New Astronomy Reviews, 48(10), 843–859. https://doi.org/10.1016/j.newar.2004.06.001
Fabian, A. C. (2012). Observational Evidence of Active Galactic Nuclei Feedback. Annual Review of Astronomy and Astrophysics, 50(1), 455–489. https://doi.org/10.1146/annurev-astro-081811-125521
Gitti, M., Brighenti, F., & McNamara, B. R. (2012). Evidence for AGN Feedback in Galaxy Clusters and Groups. Advances in Astronomy, 2012, 1–24. https://doi.org/10.1155/2012/950641
Harrison, C. M., & Almeida, C. R. (2024). Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation. Galaxies, 12(2), 17–17. https://doi.org/10.3390/galaxies12020017
Harrison, C. M., Costa, T., Tadhunter, C. N., Flütsch, A., Kakkad, D., Perna, M., & Vietri, G. (2018). AGN outflows and feedback twenty years on. Nature Astronomy, 2(3), 198–205. https://doi.org/10.1038/s41550-018-0403-6
Hickox, R. C., & Alexander, D. M. (2018). Obscured Active Galactic Nuclei. Annual Review of Astronomy and Astrophysics, 56(1), 625–671. https://doi.org/10.1146/annurev-astro-081817-051803
King, A., & Pounds, K. (2015). Powerful Outflows and Feedback from Active Galactic Nuclei. Annual Review of Astronomy and Astrophysics, 53(1), 115–154. https://doi.org/10.1146/annurev-astro-082214-122316
Lars Hernquist, & Katz, N. (1989). TREESPH - A unification of SPH with the hierarchical tree method. Astrophysical Journal Supplement, 70, 419–419. https://doi.org/10.1086/191344
McAlpine, S., Bower, R. G., Harrison, C. M., Crain, R. A., Schaller, M., Joop Schaye, & Theuns, T. (2017). The link between galaxy and black hole growth in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 468(3), 3395–3407. https://doi.org/10.1093/mnras/stx658
McNamara, B. R., & Nulsen, P. E. J. (2012). Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New Journal of Physics, 14(5), 055023. https://doi.org/10.1088/1367-2630/14/5/055023
Morganti, R. (2017). The Many Routes to AGN Feedback. Frontiers in Astronomy and Space Sciences, 4(28). https://doi.org/10.3389/fspas.2017.00042
Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez, V., Torrey, P., Genel, S., Vogelsberger, M., Pakmor, R., Marinacci, F., Weinberger, R., Kelley, L., Lovell, M., Diemer, B., & Hernquist, L. (2019). The IllustrisTNG simulations: public data release. Computational Astrophysics and Cosmology, 6(1). https://doi.org/10.1186/s40668-019-0028-x
Pillepich, A., Springel, V., Nelson, D., Genel, S., Naiman, J., Pakmor, R., Hernquist, L., Torrey, P., Vogelsberger, M., Weinberger, R., & Marinacci, F. (2017). Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 473(3), 4077–4106. https://doi.org/10.1093/mnras/stx2656
Piotrowska, J. M., Bluck, A. F. L., Maiolino, R., & Peng, Y. (2021). On the quenching of star formation in observed and simulated central galaxies: Evidence for the role of integrated AGN feedback. Monthly Notices of the Royal Astronomical Society, 512(1), 1052–1090. https://doi.org/10.1093/mnras/stab3673
Schawinski, K., Urry, C. M., Simmons, B. D., Fortson, L., Kaviraj, S., Keel, W. C., Lintott, C. J., Masters, K. L., Nichol, R. C., Sarzi, M., Skibba, R., Treister, E., Willett, K. W., Wong, O. I., & Yi, S. K. (2014). The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies★. Monthly Notices of the Royal Astronomical Society, 440(1), 889–907. https://doi.org/10.1093/mnras/stu327
Terrazas, B. A., Bell, E. F., Pillepich, A., Nelson, D., Somerville, R. S., Genel, S., Weinberger, R., Habouzit, M., Li, Y., Hernquist, L., & Vogelsberger, M. (2020). The relationship between black hole mass and galaxy properties: Examining the black hole feedback model in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 493(2), 1888–1906. https://doi.org/10.1093/mnras/staa374
Vogelsberger, M., Marinacci, F., Torrey, P., & Puchwein, E. (2020). Cosmological simulations of galaxy formation. Nature Reviews Physics, 2(1), 42–66. https://doi.org/10.1038/s42254-019-0127-2
Wagner, A. Y., Umemura, M., & Bicknell, G. V. (2013). Ultra Fast Outflows: Galaxy-Scale Active Galactic Nucleus Feedback. The Astrophysical Journal, 763(1), L18. https://doi.org/10.1088/2041-8205/763/1/l18
Ward, S. R., Harrison, C., Tiago, & Mainieri, V. (2022). Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback. Monthly Notices of the Royal Astronomical Society, 514(2), 2936–2957. https://doi.org/10.1093/mnras/stac1219
Weinberger, R., Springel, V., Hernquist, L., Pillepich, A., Marinacci, F., Pakmor, R., Nelson, D., Genel, S., Vogelsberger, M., Naiman, J., & Torrey, P. (2016). Simulating galaxy formation with black hole driven thermal and kinetic feedback. Monthly Notices of the Royal Astronomical Society, 465(3), 3291–3308. https://doi.org/10.1093/mnras/stw2944
Wright, R. J., Lagos, C. del P., Power, C., & Mitchell, P. D. (2020). The impact of stellar and AGN feedback on halo-scale baryonic and dark matter accretion in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 498(2), 1668–1692. https://doi.org/10.1093/mnras/staa2359
Zinger, E., Pillepich, A., Nelson, D., Weinberger, R., Rüdiger Pakmor, Volker Springel, Lars Hernquist, Marinacci, F., & Vogelsberger, M. (2020). Ejective and preventative: The IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Monthly Notices of the Royal Astronomical Society, 499(1), 768–792. https://doi.org/10.1093/mnras/staa2607
Downloads
Posted
Categories
License
Copyright (c) 2025 Kevin Geng

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.