Energy Harvesting through Pyroelectric Generators
DOI:
https://doi.org/10.58445/rars.2707Keywords:
Energy harvesting, Pyroelectric effect, Dopant, Plasmonic effect, Hybrid system, Solar energy, Low grade waste heat, Pyroelectric cell, Geometry, Meshed-patterned electrodes, Olsen cycle, Kim cycle, SSHIAbstract
This article endeavors to critique certain issues for enhancing energy conversion efficiency of pyroelectric generators. It discusses criteria for optimal thickness of pyroelectric materials, induction of dopants and plasmons in the pyroelectric generator system, the electrode material and design, efficient circuit design and implementation of Thermal- Electrical cycle. Depending on the application environment for these pyroelectric generators the variables like material type, geometry, dopant quality and quantity, electrode design, load capacitor voltage etc. would need to be adjusted accordingly.
References
Zhang, Zeyu, et al. "Management and storage of energy converted via a pyroelectric heat engine." Applied Energy 230 (2018): 1326-1331. https://doi.org/10.1016/j.apenergy.2018.09.101
Forman, Clemens, et al. "Estimating the global waste heat potential." Renewable and Sustainable Energy Reviews 57 (2016): 1568-1579. https://doi.org/10.1016/j.rser.2015.12.192
Hur, Sunghoon, et al. "Low-grade waste heat recovery scenarios: Pyroelectric, thermomagnetic, and thermogalvanic thermal energy harvesting." Nano Energy 114 (2023): 108596. https://doi.org/10.1016/j.nanoen.2023.108596
Baradey, Y., et al. "Waste heat recovery in heat pump systems: solution to reduce global warming." IIUM Engineering Journal 16.2 (2015): 31-42. https://doi.org/10.31436/iiumej.v16i2.602
Alalaimi, M., et al. "Effect of size on ground-coupled heat pump performance." International Journal of Heat and Mass Transfer 64 (2013): 115-121. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.034
Aguilera, José Joaquín, et al. "A review of common faults in large-scale heat pumps." Renewable and Sustainable Energy Reviews 168 (2022): 112826. https://doi.org/10.1016/j.rser.2022.112826
Jouhara, Hussam, et al. "Waste heat recovery technologies and applications." Thermal science and engineering progress 6 (2018): 268-289. https://doi.org/10.1016/j.tsep.2018.04.017
Kishore, Ravi Anant, and Shashank Priya. "A review on low-grade thermal energy harvesting: materials, methods and devices." Materials 11.8 (2018): 1433. https://doi.org/10.3390/ma11081433
Ammar, Yasmine, et al. "Low grade thermal energy sources and uses from the process industry in the UK." Applied Energy 89.1 (2012): 3-20. https://doi.org/10.1016/j.apenergy.2011.06.003
Hao, Feng, et al. "High efficiency Bi 2 Te 3-based materials and devices for thermoelectric power generation between 100 and 300 C." Energy & Environmental Science 9.10 (2016): 3120-3127. https://doi.org/10.1039/C6EE02017H
Bu, Zhonglin, et al. "A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery." Nature communications 13.1 (2022): 237. https://doi.org/10.1038/s41467-021-27916-y
Zheng, Zhuang-Hao, et al. "Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film." Nature Sustainability 6.2 (2023): 180-191. https://doi.org/10.1038/s41893-022-01003-6
Junior, OH Ando, A. L. O. Maran, and N. C. Henao. "A review of the development and applications of thermoelectric microgenerators for energy harvesting." Renewable and Sustainable Energy Reviews 91 (2018): 376-393. https://doi.org/10.1016/j.rser.2018.03.052
Kim, Hee Seok, et al. "Relationship between thermoelectric figure of merit and energy conversion efficiency." Proceedings of the National Academy of Sciences 112.27 (2015): 8205-8210. https://doi.org/10.1073/pnas.1510231112
Zoui, Mohamed Amine, et al. "A review on thermoelectric generators: Progress and applications." Energies 13.14 (2020): 3606. https://doi.org/10.3390/en13143606
Hsiao, Chun-Ching, et al. "Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting." Sensors 11.11 (2011): 10458-10473. https://doi.org/10.3390/s111110458
Cuadras, A., M. Gasulla, and Vittorio Ferrari. "Thermal energy harvesting through pyroelectricity." Sensors and Actuators A: Physical 158.1 (2010): 132-139. https://doi.org/10.1016/j.sna.2009.12.018
Tabbai, Yassine, et al. "Pyroelectric generators to harvest energy from disc brake pads for wireless sensors in electric vehicles." The European Physical Journal Applied Physics 97 (2022): 89. https://doi.org/10.1051/epjap/2022220093
Kim, Juyoung, et al. "Pyroelectric power generation from the waste heat of automotive exhaust gas." Sustainable Energy & Fuels 4.3 (2020): 1143-1149. https://doi.org/10.1039/C9SE00283A
Krishnan, S. Harihara, et al. "Pyroelectric-based solar and wind energy harvesting system." IEEE transactions on sustainable energy 5.1 (2013): 73-81. https://doi.org/10.1109/TSTE.2013.2273980
Hsiao, Chun-Ching, Jia-Wai Jhang, and An-Shen Siao. "Study on pyroelectric harvesters integrating solar radiation with wind power." Energies 8.7 (2015): 7465-7477. https://doi.org/10.3390/en8077465
Li, Haitao, et al. "Boosting solar-to-pyroelectric energy harvesting via a plasmon-enhanced solar-thermal conversion approach." Nano Energy 100 (2022): 107527. https://doi.org/10.1016/j.nanoen.2022.107527
Xue, Hao, et al. "A wearable pyroelectric nanogenerator and self-powered breathing sensor." Nano Energy 38 (2017): 147-154. https://doi.org/10.1016/j.nanoen.2017.05.056
Korkmaz, Satiye, and İ. Afşin Kariper. "Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status." Nano Energy 84 (2021): 105888. https://doi.org/10.1016/j.nanoen.2021.105888
Xie, J., et al. "Performance of thin piezoelectric materials for pyroelectric energy harvesting." Journal of Intelligent Material Systems and Structures 21.3 (2010): 243-249. https://doi.org/10.1177/1045389X09352818
Shen, Meng, et al. "Thermoelectric coupling effect in BNT-BZT-x GaN pyroelectric ceramics for low-grade temperature-driven energy harvesting." Nature Communications 14.1 (2023): 7907. https://doi.org/10.1038/s41467-023-43692-3
Bowen, Chris R., et al. "Pyroelectric materials and devices for energy harvesting applications." Energy & Environmental Science 7.12 (2014): 3836-3856. https://doi.org/10.1039/C4EE01759E
Zhang, Ding, et al. "Recent advances in pyroelectric materials and applications." Small 17.51 (2021): 2103960. https://doi.org/10.1002/smll.202103960
Wang, Qingping, Chris R. Bowen, and Ventsislav K. Valev. "Plasmonic‐pyroelectric materials and structures." Advanced Functional Materials 34.21 (2024): 2312245. https://doi.org/10.1002/adfm.202312245
Whatmore, R. W. "Pyroelectric devices and materials." Reports on progress in physics 49.12 (1986): 1335. https://doi.org/10.1088/0034-4885/49/12/002
Zabek, Daniel, John Taylor, and Christopher Rhys Bowen. "Characterization and modeling of meshed electrodes on free standing polyvilylidene difluoride (PVDF) films for enhanced pyroelectric energy harvesting." IEEE Transactions on ultrasonics, ferroelectrics, and frequency control 63.10 (2016): 1681-1689. https://doi.org/10.1109/TUFFC.2016.2606127
Solvay; 2015.Technical Data Sheet. http://solvay.com/
Siao, An-Shen, Ching-Kong Chao, and Chun-Ching Hsiao. "Study on pyroelectric harvesters with various geometry." Sensors 15.8 (2015): 19633-19648. https://doi.org/10.3390/s150819633
Zhang, Q., and R. W. Whatmore. "Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films." Journal of Applied Physics 94.8 (2003): 5228-5233. https://doi.org/10.1063/1.1613370
Lee, Felix Y., et al. "Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle." Smart Materials and Structures 21.2 (2012): 025021. https://doi.org/10.1088/0964-1726/21/2/025021
Balakt, Ahmed M., Christopher P. Shaw, and Qi Zhang. "Giant pyroelectric properties in La and Ta co-doped lead-free 0.94 Na0. 5Bi0. 5TiO3-0.06 BaTiO3 ceramics." Journal of Alloys and Compounds 709 (2017): 82-91. https://doi.org/10.1016/j.jallcom.2017.03.143
Yoshimura, Masahiro, and Kripasindhu Sardar. "Revisiting the valence stability and preparation of perovskite structure type oxides ABO 3 with the use of Madelung electrostatic potential energy and lattice site potential." RSC advances 11.34 (2021): 20737-20745. https://doi.org/10.1039/D1RA01979A
Yamanaka, Satoru, et al. "Relationship between the material properties and pyroelectric‐generating performance of PZTs." Advanced Sustainable Systems 1.3-4 (2017): 1600020. https://doi.org/10.1002/adsu.201600020
Caldwell, Joshua D., et al. "Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons." Nanophotonics 4.1 (2015): 44-68. https://doi.org/10.1515/nanoph-2014-0003
Tassin, Philippe, et al. "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics." Nature Photonics 6.4 (2012): 259-264. https://doi.org/10.1038/nphoton.2012.27
Gogoi, Deepshikha, et al. "A hybrid system for plasmonic and surface polarization induced pyro-phototronic harvesting of light." Optical Materials 122 (2021): 111733. https://doi.org/10.1016/j.optmat.2021.111733
Wu, Chang-Mou, et al. "Infrared-driven poly (vinylidene difluoride)/tungsten oxide pyroelectric generator for non-contact energy harvesting." Composites Science and Technology 178 (2019): 26-32. https://doi.org/10.1016/j.compscitech.2019.05.004
Xie, Mengying, et al. "Wind-driven pyroelectric energy harvesting device." Smart Materials and Structures 25.12 (2016): 125023. https://doi.org/10.1088/0964-1726/25/12/125023
Sharma, Manish, et al. "Pyroelectric materials for solar energy harvesting: a comparative study." Smart Materials and Structures 24.10 (2015): 105013. https://doi.org/10.1088/0964-1726/24/10/105013
Thakre, Atul, et al. "Enhanced pyroelectric response from domain-engineered lead-free (K0. 5Bi0. 5TiO3-BaTiO3)-Na0. 5Bi0. 5TiO3 ferroelectric ceramics." Journal of the European Ceramic Society 41.4 (2021): 2524-2532. https://doi.org/10.1016/j.jeurceramsoc.2020.11.013
Jiang, Jie, et al. "Giant pyroelectricity in nanomembranes." Nature 607.7919 (2022): 480-485. https://doi.org/10.1038/s41586-022-04850-7
Leng, Qiang, et al. "Harvesting heat energy from hot/cold water with a pyroelectric generator." Journal of materials chemistry A 2.30 (2014): 11940-11947. https://doi.org/10.1039/C4TA01782J
Sebald, Gael, Elie Lefeuvre, and Daniel Guyomar. "Pyroelectric energy conversion: optimization principles." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55.3 (2008): 538-551. https://doi.org/10.1109/TUFFC.2008.680
Costa, Pedro, et al. "Recent progress on piezoelectric, pyroelectric, and magnetoelectric polymer‐based energy‐harvesting devices." Energy technology 7.7 (2019): 1800852. https://doi.org/10.1002/ente.201800852
Gusarov, Boris, et al. "Flexible composite thermal energy harvester using piezoelectric PVDF polymer and shape memory alloy." 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2015. https://doi.org/10.1109/TRANSDUCERS.2015.7181025
Zi, Yunlong, et al. "Triboelectric–pyroelectric–piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing." Advanced Materials 27.14 (2015): 2340-2347. https://doi.org/10.1002/adma.201500121
Jiang, Dongyue, et al. "A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids." Nano Energy 70 (2020): 104459. https://doi.org/10.1016/j.nanoen.2020.104459
Baba, Masaaki, et al. "Predicting performance of thermal-electrical cycles in pyroelectric power generation." Japanese Journal of Applied Physics 59.9 (2020): 094501. https://doi.org/10.35848/1347-4065/aba9a8
Batra, A. K., et al. "Modeling and simulation for PVDF-based pyroelectric energy harvester." Energy Science and Technology 5.2 (2013): 1-7. https://doi.org/10.3968/j.est.1923847920130502.2407
Downloads
Posted
Categories
License
Copyright (c) 2025 Rishaab Uppaal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.