Exploring the Concept of Enlarging a Proton: Theoretical Implications and Applications
DOI:
https://doi.org/10.58445/rars.2288Keywords:
physics, Proton Charge Radius, Quantum Tunneling, Interstellar Travel, proton, electron, hadron, muon, quantum, STEM, Particle Manipulation, atom, Data Storage, Quantum Chromodynamics, Fundamental Particles, Quantum ComputingAbstract
Protons, fundamental components of atomic nuclei, play a crucial role in the structure and behavior of matter. This paper explores the theoretical and practical implications of enlarging a proton, drawing parallels with concepts from quantum chromodynamics (QCD) and speculative science fiction, such as the Sophon from Cixin Liu's Remembrance of Earth’s Past trilogy. The study delves into the proton charge radius puzzle, the challenges associated with proton manipulation, and the potential applications of enlarged protons in quantum computing, data storage, and interstellar travel. The discussion extends to the feasibility of engineering protons with modified properties for advanced technological uses. By bridging quantum physics and speculative exploration, this paper provides insights into the potential breakthroughs that manipulating fundamental particles could bring to science and technology.
References
Antognini, A., Nez, F., Schuhmann, K., Amaro, F. D., Biraben, F., Cardoso, J. M., ... & Pohl, R. (2013). Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science, 339(6118), 417-420.
Gao, H., & Vanderhaeghen, M. (2021). The proton charge radius. Physics Reports.
Liu, C. (2008–2010). Remembrance of Earth’s Past trilogy (Three-body problem, The Dark Forest, Death's End). (Trans. Joel Martinsen). Tor Books.
DeGregorio, N., & Iyengar, S. S. (2020). Challenges in constructing accurate methods for hydrogen transfer reactions in large biological assemblies: Rare events sampling for mechanistic discovery and tensor networks for quantum nuclear effects. Faraday Discussions, 221, 379–405.
CERN. (n.d.). The Large Hadron Collider
NASA. (2020). Advanced Propulsion Concepts for Interstellar Exploration.
Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information (10th anniversary ed.). Cambridge University Press.
Schrödinger, E. (1935). Discussion of probability relations in quantum mechanics.
Deutsch, D. (1985). Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London A, 400(1818), 97–117.
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993).
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13), 1895–1899. https://doi.org/10.1103/PhysRevLett.70.1895
Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396. https://doi.org/10.1063/1.531249
NASA. (2020). Artificial intelligence for space exploration. NASA Technical Reports.
Becker, K., Becker, M., & Schwarz, J. H. (2007). String theory and M-theory: A modern introduction. Cambridge University Press.
Green, M. B., Schwarz, J. H., & Witten, E. (1987). Superstring theory (Vol. 1). Cambridge University Press.
Polchinski, J. (1998). String theory (Vol. 1). Cambridge University Press.
Amsler, C., et al. (2008). Review of particle physics. Physics Letters B, 667(1–2), 1–134.
Fritzsch, H., & Gell-Mann, M. (1971). Quarks and leptons: An elementary introduction to the fundamental particles. Springer-Verlag.
Perdue, A., & Schiavilla, R. (2017). Proton structure and effective size in high-energy scattering. Physics Reports, 623, 1–30.
Kharzeev, D. (2004). The QCD vacuum, high-energy heavy-ion collisions and the colors of the string. Physics Reports, 398(5), 257-311. https://doi.org/10.1016/j.physrep.2004.10.002
CMS Collaboration. (2015). Proton size in high-energy collisions. Journal of High Energy Physics, 2015(3), 45-56. https://doi.org/10.1007/JHEP03(2015)045
Abdallah, J., et al. (2016). Proton Structure in the Standard Model and Beyond. Journal of High Energy Physics, 2016(2), 1-15.
Bouchiat, C., et al. (2008). New Directions in Proton Radius Measurements and the Proton’s Internal Structure. Physical Review Letters, 100(5), 121802.
Glendenning, N. K. (2000). Compact Stars: Nuclear Physics, Particle Physics, and General Relativity. Springer Science & Business Media.
Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric Dark Matter. Physics Reports, 267(5), 195-373.
O'Hara, K., et al. (2011). Proton Distribution and Nuclear Matter. Nuclear Physics A, 848(3), 200-215.
Polchinski, J. (1998). String Theory, Volumes 1 & 2: An Introduction to the Bosonic String. Cambridge University Press.
Rapp, R., et al. (2001). Proton-Hadron Interactions in Dense Matter. Physical Review C, 64(1), 016602.
Schwinger, J. (1951). On the Radiative Correction to Electron Scattering. Physical Review, 82(5), 1042-1047.
Barton, A., et al. (2019). Laser-driven hadron interactions: The influence of high-intensity laser fields on protons. Nature Physics, 15(8), 716-721.
Bertulani, C. A., et al. (2020). The Pauli Exclusion Principle and its role in particle interactions. Physics Letters B, 808, 135676.
Greensite, J. (2011). The Physics of QCD: Gluons and the proton structure. Springer.
Kaplan, D., & Nelson, A. (2006). New physics beyond the Standard Model: Proton and quark interactions. Annual Review of Nuclear and Particle Science, 56, 307-335.
Downloads
Posted
Categories
License
Copyright (c) 2025 Elif Özdemir

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.