Advancements and Challenges in Dark Matter Detection: A Review of the XENONnT Experiment
DOI:
https://doi.org/10.58445/rars.2135Keywords:
Xenon, Muon Veto, Dark Matter, Photomultiplier Tubes, Time-Projection ChamberAbstract
This study aims to examine the methodology behind the XENON dark matter detector, which utilizes liquid xenon as a medium to detect signals generated from collisions between dark matter and known particles. With the significance of dark matter in galactic orbitals, velocity dispersions, and rotational curves, the potential implications of verifying dark matter through the XENONnT experiment are demonstrated, as well as the similarities and differences with other experiments that sought to directly detect the presence of dark matter in our cosmos. The study further discusses the exact methodology of the experiment, such as the production of photons and energy from the theoretical dark matter-particle collisions and the infrastructure of the XENON detector—namely the photomultiplier tubes and the time-projection chamber utilized for tagging and identifying signals, along with the recovery and storage system RESTOX II—that aids in converting raw signals into interpretable data. Major sources of noise for the detection of dark matter signals–including cosmic rays, radioactive material, and neutron recoil background signals–are explained, alongside the improvements that were made to previous XENON experiments to increase the sensitivity of the detector and to better reconstruct scintillation signals. Particularly, the geographical location of the XENONnT detector, along with the nuclear and muon veto systems are mentioned. Moreover, recent data from the XENONnT experiment regarding enhanced sensitivity and background reduction capability are mentioned, to highlight the implications of these collected pieces of data for future liquid xenon detectors.
References
Aalbers, J., AbdusSalam, S. S., Abe, K., Aerne, V., Agostini, F., Ahmed Maouloud, S., Akerib, D. S., Akimov, D. Y., Akshat, J., & Al Musalhi, A. K. (2022). A next-generation liquid xenon observatory for dark matter and neutrino physics. Journal of Physics G: Nuclear and Particle Physics, 50(1). https://doi.org/10.1088/1361-6471/ac841a
Aalbers, J., AbdusSalam, S. S., Abe, K., Aerne, V., Agostini, F., Ahmed Maouloud, S., Akerib, D. S., Akimov, D. Y., Akshat, J., & Al Musalhi, A. K. (2022). The background rates in liquid xenon TPCs (before ER/NR discrimination) have decreased exponentially over the years. This has been a key accomplishment that has enabled an exponential gain in sensitivity with ever-larger detectors. Solid dots are the best achieved limits, open squares the expected sensitivities. The experiment discussed here is labeled DARWIN/G3 and will at low energies be dominated by the signal from solar neutrinos. IOP Science. Retrieved March 4, 2024, from https://doi.org/10.1088/1361-6471/ac841a .
Akerib, D. S., C.W. Akerlof , D.Yu. Akimov, A. Alquahtani, S.K. Alsum, T.J. Anderson, N. Angelides, H.M. Araújo, A. Arbuckle, J.E. Armstrong, M. Arthurs, H. Auyeung, X. Bai, A.J. Bailey, J. Balajthy, S. Balashov, J. Bang, M.J. Barry, J. Barthel, D. Bauer …C. Zhang 27 (2020). The LUX-ZEPLIN (LZ) experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 953. https://doi.org/10.1016/j.nima.2019.163047
Albakry, M. F., I. Alkhatib, D. W. P. Amaral, T. Aralis, T. Aramaki, I. J. Arnquist, I. Ataee Langroudy, E. Azadbakht, S. Banik, C. Bathurst, D. A. Bauer, R. Bhattacharyya, P. L. Brink, R. Bunker, B. Cabrera, R. Calkins, R. A. Cameron, C. Cartaro, D. G. Cerdeno,..., Schnee, R.W. (2022). A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility. https://doi.org/10.48550/arXiv.2203.08463
Alfonsi, M. (2016). The Xenon Dark Matter Project: From XENON100 to XENON1T. Nuclear and Particle Physics Proceedings, 273–275, 373–377. https://doi.org/10.1016/j.nuclphysbps.2015.09.053
Aprile, E., Aalbers, J., Abe, K., Maouloud, S. A., Althueser, L., Andrieu, B., Angelino, E., Angevaare, J. R., Antochi, V. C., Martin, D. A., Arneodo, F., Balata, M., Baudis, L., Baxter, A. L., Bazyk, M., Bellagamba, L., Biondi, R., Bismark, A., Brookes, E. J., & Zhu, T. (2024). The XENONnT Dark Matter Experiment. https://doi.org/10.48550/arXiv.2402.10446
Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., Antochi, V. C., Angelino, E., Angevaare, J. R., Arneodo, F., Barge, D., Baudis, L., Bauermeister, B., Bellagamba, L., Benabderrahmane, M. L., Berger, T., Brown, A., Brown, E., bruenner, S.,..., Mougeot, X. (2020). Excess electronic recoil events in XENON1T. Physical Review D, 102. https://doi.org/10.48550/arXiv.2006.09721
Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., Antochi, V. C., Angelino, E., Angevaare, J. R., Arneodo, F., Barge, D., Baudis, L., Bauermeister, B., Bellagamba, L., Benabderrahmane, M. L., Berger, T., Brown, A., Brown, E., bruenner, S.,..., Odgers, K. (2020). Projected WIMP sensitivity of the XENONnT dark matter experiment. Journal of Cosmology and Astroparticle Physics. https://doi.org/10.1088/1475-7516/2020/11/031
Aprile, E., Abe, K., Agostini, F., Ahmed Maouloud, S., Althueser, L., Andrieu, B., Angelino, E., Angevaare, J. R., Antochi, V. C., Antón Martin, D., Arneodo, F., Baudis, L., Baxter, A. L., Bazyk, M., Bellagamba, L., Biondi, R., Bismark, A., Brookes, E. J., Brown, A.,..., Zhu, T. (2023). First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment. Physical Review Letters, 131(4). https://doi.org/: 10.1103/PhysRevLett.131.041003
Aprile, E., Abe, K., Agostini, F., Ahmed Maouloud, S., Althueser, L., Andrieu, B., Angelino, E., Angevaare, J. R., Antochi, V. C., Antón Martin, D., Arneodo, F., Baudis, L., Baxter, A. L., Bazyk, M., Bellagamba, L., Biondi, R., Bismark, A., Brookes, E. J., Brown, A.,..., Zhu, T. (2023). Upper limit on spin-independent WIMP-nucleon cross section at 90% confidence level (full black line) as a function of the WIMP mass. Physical Review Journals. Retrieved March 10, 2024, from https://doi.org/:10.1103/PhysRevLett.131.041003.
Baudis, L., Biondi, Y., Capelli, C., Galloway, M., Kazama, S., Kish, A., Pakarha, P., Piastra, F., & Wulf, J. (2018). A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon. The European Physical Journal C, 78(351). https://doi.org/10.1140/epjc/s10052-018-5801-5
Bertone, G. (2010). The moment of truth for WIMP dark matter. Nature, 468, 389–393. https://doi.org/10.1038/nature09509
Cerdeno, D. G., & Green, A. M. (2010). Direct detection of WIMPs. Particle Dark Matter Observations, Models and Searches, 17, 347–369. https://doi.org/10.48550/arXiv.1002.1912
Di Gangi, P. (2021). The Xenon Road to direct detection of dark matter at LNGS: The xenon project. Universe, 7(8), 313. https://doi.org/10.3390/universe7080313
Federica, A. (2017). The XENON Project: Backgrounds and Results. https://hdl.handle.net/20.500.12571/9864
Garrett, K., & Duda, G. (2011). Dark Matter: A Primer. Advances in Astronomy, 2011. https://doi.org/10.1155/2011/968283
Griest, K., & Kamionkowski, M. (2000). Supersymmetric dark matter. Physics Reports, 333–334, 167–182. https://doi.org/10.1016/S0370-1573(00)00021-1.
Lavina, L. S. (2018). The challenges of the direct dark matter search with liquid xenon. Instrumentation and Methods for Astrophysic. https://theses.hal.science/tel-03504494
Lavina, L. S. (2021). The gas-handling system of XENON1T consists of the cryogenic system (cooling), the purification system (online removal of electronegative impurities), the cryogenic distillation column (natKr removal), ReStoX (LXe storage, filling and recovery), the gas bottle rack (injection of gas into the system) and gas analytics station (gas chromatograph). The cryostat inside the water shield accommodates the TPC. HAL Open Science. Retrieved March 3, 2024, from https://theses.hal.science/tel-03504494/.
López Paredes, B., Araújo, H. M., Froborg, F., Marangou, N., Olcina, I., Sumner, T. J., Taylor, R., Tomás, A., & Vacheret, A. (2018). Response of photomultiplier tubes to Xenon Scintillation Light. Astroparticle Physics, 102, 56–66. https://doi.org/10.1016/j.astropartphys.2018.04.006
Mancuso, A. (2020). Neutron Veto of XENONnT: Final Construction Design of the System and Extensive Study and Calibration of the PMTs. https://amslaurea.unibo.it/id/eprint/19854
Maouloud, A. (2023). Status and First Results From XENONnT. https://doi.org/10.48550/arXiv.2310.11322
Mount, B. J. (2017). Lux-ZEPLIN (LZ) Technical Design Report. https://doi.org/10.2172/1365579
National Accelerator Laboratory. (2023, July 12). Experiment overview. Super Cryogenic Dark Matter Search. https://supercdms.slac.stanford.edu/overview/experiment-overview
Pierre, M. (2021). Neutrinoless double beta decay search in XENON1T and xenonnt. Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021). https://doi.org/10.22323/1.395.0540
Polyakov, S. V. (2013). Chapter 3 - Photomultiplier Tubes. Experimental Methods in the Physical Sciences, 45, 69–82. https://doi.org/10.1016/B978-0-12-387695-9.00003-2
Sivaram, C., & Reddy, V. M. (2007). Dark Matter, Dark Energy and Rotation Curves. https://doi.org/10.48550/arXiv.0710.4384
Supersymmetry. CERN. (n.d.). https://home.cern/science/physics/supersymmetry
Time Projection Chamber. XENONnT experiment. (n.d.). https://xenonexperiment.org/time-projection-chamber/
Virdee, T. (2016). The status of the search for dark matter in direct experiments with limits from ongoing and future experiments, along with the floor from neutrino interactions. JSTOR. Retrieved March 12, 2024, from http://www.jstor.org/stable/24760764.
Downloads
Posted
Categories
License
Copyright (c) 2025 Junseok Huh
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.