Preprint / Version 1

Therapeutic Applications and Targets of Chemogenetic Neuromodulation in Parkinson’s Disease

A Comprehensive Review of Current Literature

##article.authors##

  • Lauren Vidinha Cambridge Centre for International Research

DOI:

https://doi.org/10.58445/rars.2097

Keywords:

chemogenetics, Parkinson's Disease, GPCRs, DREADDs, neurodegeneration, neuromodulation, therapeutics, neurology, neurosurgery, translational medicine

Abstract

In previous studies, chemogenetics has been utilized as a method of investigation into Parkinson’s Disease (PD), and a range of possible therapeutic targets for ameliorating PD have been suggested in terms of engineered receptors of specific neuronal subtypes and pathways. Though chemogenetics has been used on occasions as a tool for investigating brain functions in rodent models, and less often tested as a method of modulating GPCRs in order to mitigate neurodegenerative diseases and their symptoms relative to in vivo studies, it is yet to be tested in humans or recognized as a feasible treatment option for PD in the future. For this reason, this review organizes past research on the topics of chemogenetic neuromodulation, sites linked to Parkinson’s that have been successfully targeted using chemogenetics, and targets that may be linked to PD that are viable targets to be regulated using chemogenetics in future studies in order to highlight the therapeutic potential of chemogenetics as a clinical intervention. More precisely, these sources point to the usefulness of chemogenetic technologies like DREADDs and PSAMs in targeting sites previously researched in relation to chemogenetics such as zona incerta GABAergic neurons, the autonomous subthalamic nucleus (STN), and orexin (hypocretin) neurons. Additionally, we extend on current research by suggesting the promising findings on possible targets inclusive of Group I mGluRs, striatal Myf5 cells, and P2Y12R inhibition as it relates to PD progression. Altogether, we conclude that the literature indicates that chemogenetics is a relatively young technology within neuroengineering showing a lot of promise for Parkinson’s Disease, and more research must be carried out in order for this technology to be established as a trusted therapeutic and for safe and functional targets for treatment, particularly those discussed in this literature, to be crystallized as tenable for the palliation of PD and its symptoms.

References

Roth, B. L. (2016). DREADDs for Neuroscientists. Neuron, 89(4), 683–694. https://doi.org/10.1016/j.neuron.2016.01.040

Poth, K. M., Texakalidis, P., & Boulis, N. M. (2021). Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery, 89(2), 185. https://doi.org/10.1093/neuros/nyab147

Song, J., Patel, R. V., Sharif, M., Ashokan, A., & Michaelides, M. (2022). Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Molecular Therapy, 30(3), 990–1005. https://doi.org/10.1016/j.ymthe.2021.11.019

Simon, D. K., Tanner, C. M., & Brundin, P. (2020). Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clinics in Geriatric Medicine, 36(1), 1–12. https://doi.org/10.1016/j.cger.2019.08.002

Axelsen, T. M., & Woldbye, D. P. D. (2018). Gene Therapy for Parkinson’s Disease, An Update. Journal of Parkinson’s Disease, 8(2), 195–215. https://doi.org/10.3233/JPD-181331

Yeo, J. S. B. (2019). Chemogenetic and optogenetic stimulation of striatal MYF5 cells leads to a formation of parkinsonian tremor and other motor function deficits. https://escholarship.org/uc/item/0k10z2w6

Ramakrishnan, S., & De Jesus, O. (2023, August 28). Akinesia. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK562177/#:~:text=The%20term%20akinesia%20refers%20to,power%20to%20initiate%20the%20movement.

Berardelli, A., Rothwell, J. C., Thompson, P. D., & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson's disease. Brain : a journal of neurology, 124(Pt 11), 2131–2146. https://doi.org/10.1093/brain/124.11.2131

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of Neurology Neurosurgery & Psychiatry, 79(4), 368–376. https://doi.org/10.1136/jnnp.2007.131045

Kamath, T., Abdulraouf, A., Burris, S. J., Langlieb, J., Gazestani, V., Nadaf, N. M., Balderrama, K., Vanderburg, C., & Macosko, E. Z. (2022). Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nature Neuroscience, 25(5), Article 5. https://doi.org/10.1038/s41593-022-01061-1

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 1–13. https://doi.org/10.1155/2017/8416763

NCI Dictionary of Cancer Terms. (n.d.). Cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/oxidative-stress

Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., & Jackson-Lewis, V. R. (2015). Oxidative stress and Parkinson’s disease. Frontiers in Neuroanatomy, 9. https://doi.org/10.3389/fnana.2015.00091

Wang, D., Zheng, H., Zhou, W., Duan, Z., Jiang, S., Li, B., Zheng, X., & Jiang, L. (2022). Mitochondrial dysfunction in Oxidative Stress‐Mediated Intervertebral Disc degeneration. Orthopaedic Surgery, 14(8), 1569–1582. https://doi.org/10.1111/os.13302

Jin, S. M., & Youle, R. J. (2012). PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125(4), 795–799. https://doi.org/10.1242/jcs.093849

Choong, C., & Mochizuki, H. (2023). Involvement of mitochondria in Parkinson’s disease. International Journal of Molecular Sciences, 24(23), 17027. https://doi.org/10.3390/ijms242317027

NHS UK. (2023, August 22). Treatment. nhs.uk. https://www.nhs.uk/conditions/parkinsons-disease/treatment/

You, H., Mariani, L.-L., Mangone, G., Le Febvre de Nailly, D., Charbonnier-Beaupel, F., & Corvol, J.-C. (2018). Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell and Tissue Research, 373(1), 111–135. https://doi.org/10.1007/s00441-018-2813-2

Deep brain stimulation (DBS) for the treatment of Parkinson’s disease and other movement disorders. (n.d.). National Institute of Neurological Disorders and Stroke. Retrieved September 1, 2023, from https://www.ninds.nih.gov/about-ninds/impact/ninds-contributions-approved-therapies/deep-brain-stimulation-dbs-treatment-parkinsons-disease-and-other-movement-disorders

Sternson, S. M., & Bleakman, D. (2020). Chemogenetics: Drug-controlled gene therapies for neural circuit disorders. Cell & Gene Therapy Insights, 6(7), 1079–1094. https://doi.org/10.18609/cgti.2020.112

Zhu, H., & Roth, B. L. (2015). DREADD: A Chemogenetic GPCR Signaling Platform. International Journal of Neuropsychopharmacology, 18(1), pyu007. https://doi.org/10.1093/ijnp/pyu007

Campbell, E. J., & Marchant, N. J. (2018). The use of chemogenetics in behavioural neuroscience: Receptor variants, targeting approaches and caveats. British Journal of Pharmacology, 175(7), 994–1003. https://doi.org/10.1111/bph.14146

Allen, J. A., & Roth, B. L. (2011). Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annual review of pharmacology and toxicology, 51, 117–144. https://doi.org/10.1146/annurev-pharmtox-010510-100553

Meltzer, H. Y., & Roth, B. L. (2013). Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs. The Journal of clinical investigation, 123(12), 4986–4991. https://doi.org/10.1172/JCI70678

Addgene: Chemogenetics Guide. (n.d.). https://www.addgene.org/guides/chemogenetics/#:~:text=There%20are%20currently%20two%20Gi,by%20increasing%20intracellular%20cAMP%20concentrations

NCI Dictionary of Cancer Terms. (n.d.-b). Cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/intraperitoneal

Orton, E., & Liu, R. (2014). Salvinorin A: A Mini Review of Physical and Chemical Properties Affecting Its Translation from Research to Clinical Applications in Humans. Translational perioperative and pain medicine, 1(1), 9–11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208627/

Vardy, E., Robinson, J. E., Li, C., Olsen, R. H. J., DiBerto, J. F., Giguere, P. M., Sassano, F. M., Huang, X. P., Zhu, H., Urban, D. J., White, K. L., Rittiner, J. E., Crowley, N. A., Pleil, K. E., Mazzone, C. M., Mosier, P. D., Song, J., Kash, T. L., Malanga, C. J., Krashes, M. J., … Roth, B. L. (2015). A New DREADD Facilitates the Multiplexed Chemogenetic Interrogation of Behavior. Neuron, 86(4), 936–946. https://doi.org/10.1016/j.neuron.2015.03.065

Marchant, N. J., Whitaker, L. R., Bossert, J. M., Harvey, B. K., Hope, B. T., Kaganovsky, K., Adhikary, S., Prisinzano, T. E., Vardy, E., Roth, B. L., & Shaham, Y. (2015). Behavioral and physiological effects of a novel Kappa-Opioid Receptor-Based DREADD in rats. Neuropsychopharmacology, 41(2), 402–409. https://doi.org/10.1038/npp.2015.149

Nagai, Y., Miyakawa, N., Takuwa, H., Hori, Y., Oyama, K., Ji, B., Takahashi, M., Huang, X.-P., Slocum, S. T., DiBerto, J. F., Xiong, Y., Urushihata, T., Hirabayashi, T., Fujimoto, A., Mimura, K., English, J. G., Liu, J., Inoue, K., Kumata, K., … Minamimoto, T. (2020). Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nature Neuroscience, 23(9), Article 9. https://doi.org/10.1038/s41593-020-0661-3

Chen, X., Choo, H., Huang, X. P., Yang, X., Stone, O., Roth, B. L., & Jin, J. (2015). The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS chemical neuroscience, 6(3), 476–484. https://doi.org/10.1021/cn500325v

Thompson, K. J., Khajehali, E., Bradley, S. J., Navarrete, J. S., Huang, X. P., Slocum, S., Jin, J., Liu, J., Xiong, Y., Olsen, R. H. J., Diberto, J. F., Boyt, K. M., Pina, M. M., Pati, D., Molloy, C., Bundgaard, C., Sexton, P. M., Kash, T. L., Krashes, M. J., Christopoulos, A., … Tobin, A. B. (2018). DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs in Vitro and in Vivo. ACS pharmacology & translational science, 1(1), 61–72. https://doi.org/10.1021/acsptsci.8b00012

Lawson, K. A., Ruiz, C. M., & Mahler, S. V. (2023). A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. Psychopharmacology, 240(10), 2101–2110. https://doi.org/10.1007/s00213-023-06429-0

Bonaventura, J., Eldridge, M. A. G., Hu, F., Gomez, J. L., Sanchez-Soto, M., Abramyan, A. M., Lam, S., Boehm, M. A., Ruiz, C., Farrell, M. R., Moreno, A., Galal Faress, I. M., Andersen, N., Lin, J. Y., Moaddel, R., Morris, P. J., Shi, L., Sibley, D. R., Mahler, S. V., Nabavi, S., … Michaelides, M. (2019). High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nature communications, 10(1), 4627. https://doi.org/10.1038/s41467-019-12236-z

Magnus, C. J., Lee, P. H., Atasoy, D., Su, H. H., Looger, L. L., & Sternson, S. M. (2011). Chemical and genetic engineering of selective ion channel-ligand interactions. Science (New York, N.Y.), 333(6047), 1292–1296. https://doi.org/10.1126/science.1206606

Magnus, C. J., Lee, P. H., Bonaventura, J., Zemla, R., Gomez, J. L., Ramirez, M. H., Hu, X., Galvan, A., Basu, J., Michaelides, M., & Sternson, S. M. (2019). Ultrapotent chemogenetics for research and potential clinical applications. Science, 364(6436). https://doi.org/10.1126/science.aav5282

Singh, D., & Saadabadi, A. (2022, December 14). Varenicline. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK534846/

Covid-, O., Table, S. A., Drugs, & Biologics Clinical Practice Guidelines Working Group* (2021). Ivermectin treatment for Strongyloides infection in patients with COVID-19. Canada communicable disease report = Releve des maladies transmissibles au Canada, 47(7-8), 316–321. https://doi.org/10.14745/ccdr.v47i78a04

NCI Dictionary of Cancer Terms. (n.d.-c). Cancer.gov. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tropisetron

Edwards, G., Dingsdale, A., Helsby, N., Orme, M. L., & Breckenridge, A. M. (1988). The relative systemic availability of ivermectin after administration as capsule, tablet, and oral solution. European journal of clinical pharmacology, 35(6), 681–684. https://doi.org/10.1007/BF00637608

Chen, F., Qian, J., Cao, Z., Li, A., Cui, J., Shi, L., & Xie, J. (2023). Chemogenetic and optogenetic stimulation of zona incerta GABAergic neurons ameliorates motor impairment in Parkinson’s disease. IScience, 26(7), 107149. https://doi.org/10.1016/j.isci.2023.107149

Sonne, J., Reddy, V., & Beato, M. R. (2023). Neuroanatomy, Substantia Nigra. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK536995/

Wang, X., Chou, X., Zhang, L. I., & Tao, H. W. (2020). Zona Incerta: An Integrative Node for Global Behavioral Modulation. Trends in Neurosciences, 43(2), 82–87. https://doi.org/10.1016/j.tins.2019.11.007

McIver, E. L., Chu, H.-Y., Atherton, J. F., Cosgrove, K. E., Kondapalli, J., Wokosin, D., Surmeier, D. J., & Mark, D. B. (2018). Chemogenetic restoration of autonomous subthalamic nucleus activity ameliorates Parkinsonian motor dysfunction (p. 385443). bioRxiv. https://doi.org/10.1101/385443

Weintraub, D. B., & Zaghloul, K. A. (2013). The role of the subthalamic nucleus in cognition. Reviews in the Neurosciences, 24(2), 125–138. https://doi.org/10.1515/revneuro-2012-0075

Stanojlovic, M., Pallais, J. P., & Kotz, C. M. (2019). Chemogenetic Modulation of Orexin Neurons Reverses Changes in Anxiety and Locomotor Activity in the A53T Mouse Model of Parkinson’s Disease. Frontiers in Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnins.2019.00702

Stanojlovic, M., Pallais, J. P., & Kotz, C. M. (2021). Inhibition of Orexin/Hypocretin Neurons Ameliorates Elevated Physical Activity and Energy Expenditure in the A53T Mouse Model of Parkinson’s Disease. International Journal of Molecular Sciences, 22(2), Article 2. https://doi.org/10.3390/ijms22020795

Stanojlovic, M., Pallais, J. P., Lee, M. K., & Kotz, C. M. (2019). Pharmacological and chemogenetic orexin/hypocretin intervention ameliorates Hipp-dependent memory impairment in the A53T mice model of Parkinson’s disease. Molecular Brain, 12(1), 87. https://doi.org/10.1186/s13041-019-0514-8

Stanojlovic, M., Pallais Yllescas, J. P., Vijayakumar, A., & Kotz, C. (2019). Early Sociability and Social Memory Impairment in the A53T Mouse Model of Parkinson’s Disease Are Ameliorated by Chemogenetic Modulation of Orexin Neuron Activity. Molecular Neurobiology, 56(12), 8435–8450. https://doi.org/10.1007/s12035-019-01682-x

Inutsuka, A., & Yamanaka, A. (2013). The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in Endocrinology, 4, 18. https://doi.org/10.3389/fendo.2013.00018

Liu, C., Xue, Y., Liu, M.-F., Wang, Y., & Chen, L. (2020). Orexin and Parkinson’s disease: A protective neuropeptide with therapeutic potential. Neurochemistry International, 138, 104754. https://doi.org/10.1016/j.neuint.2020.104754

Xu, P., Chen, A., Li, Y., Xing, X., & Lu, H. (2019). Medial prefrontal cortex in neurological diseases. Physiological genomics, 51(9), 432–442. https://doi.org/10.1152/physiolgenomics.00006.2019

Iarkov, A., Mendoza, C., & Echeverria, V. (2021). Cholinergic receptor modulation as a target for preventing dementia in Parkinson’s disease. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.665820

Eickhoff, S., Franzen, L., Korda, A., Rogg, H., Trulley, V., Borgwardt, S., & Avram, M. (2022). The basal forebrain cholinergic nuclei and their relevance to schizophrenia and other psychotic disorders. Frontiers in Psychiatry, 13. https://doi.org/10.3389/fpsyt.2022.909961

Quik, M., Bordia, T., Huang, L., & Perez, X. (2011). Targeting nicotinic receptors for Parkinson’s disease therapy. CNS & Neurological Disorders - Drug Targets, 10(6), 651–658. https://doi.org/10.2174/187152711797247849

Quik, M., Zhang, D., McGregor, M., & Bordia, T. (2015). Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochemical Pharmacology, 97(4), 399–407. https://doi.org/10.1016/j.bcp.2015.06.014

Zhao, J., Li, Y., Li, Y., Xu, S., Tao, T., Hua, Y., Zhang, J., & Fan, Y. (2021). Activation of Α7-NACHRs promotes the clearance of Α-Synuclein and protects against apoptotic cell death induced by exogenous Α-Synuclein fibrils. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.637319

Bickham, K., Withers, C. P., Diedrich, A., & Moehle, M. S. (2022). Sub-type selective muscarinic acetylcholine receptors modulation for the treatment of parkinsonian tremor. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2022.04.04.487007

Brugnoli, A., Pisanò, C. A., & Morari, M. (2020). Striatal and nigral muscarinic type 1 and type 4 receptors modulate levodopa-induced dyskinesia and striato-nigral pathway activation in 6-hydroxydopamine hemilesioned rats. Neurobiology of Disease, 144, 105044. https://doi.org/10.1016/j.nbd.2020.105044

Bock, A., Schrage, R., & Mohr, K. (2018). Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology, 136, 427–437. https://doi.org/10.1016/j.neuropharm.2017.09.024

Tubert, C., Galtieri, D., & Surmeier, D. J. (2019). The pedunclopontine nucleus and Parkinson’s disease. Neurobiology of Disease, 128, 3–8. https://doi.org/10.1016/j.nbd.2018.08.017

Pahapill, P. A. (2000). The pedunculopontine nucleus and Parkinson’s disease. Brain, 123(9), 1767–1783. https://doi.org/10.1093/brain/123.9.1767

Seo, D., Ju, Y. H., Seo, J., Oh, S., Lee, C. J., Lee, S. E., & Nam, M. (2023). DDC-Promoter-Driven chemogenetic activation of SNPC dopaminergic neurons alleviates parkinsonian motor symptoms. International Journal of Molecular Sciences, 24(3), 2491. https://doi.org/10.3390/ijms24032491

Schwarz, L. A., & Luo, L. (2015). Organization of the Locus Coeruleus-Norepinephrine system. Current Biology, 25(21), R1051–R1056. https://doi.org/10.1016/j.cub.2015.09.039

Waterhouse, B. D., & Navarra, R. L. (2019). The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Research, 1709, 1–15. https://doi.org/10.1016/j.brainres.2018.08.032

Ross, J. A., & Van Bockstaele, E. J. (2021). The Locus coeruleus- norepinephrine System in Stress and Arousal: Unraveling historical, current, and future perspectives. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.601519

Poe, G. R., Foote, S., Eschenko, O., Johansen, J. P., Bouret, S., Aston-Jones, G., Harley, C. W., Manahan-Vaughan, D., Weinshenker, D., Valentino, R., Berridge, C., Chandler, D. J., Waterhouse, B., & Sara, S. J. (2020). Locus coeruleus: a new look at the blue spot. Nature Reviews. Neuroscience, 21(11), 644–659. https://doi.org/10.1038/s41583-020-0360-9

Iannitelli, A. F., & Weinshenker, D. (2023). Riddles in the dark: Decoding the relationship between neuromelanin and neurodegeneration in locus coeruleus neurons. Neuroscience & Biobehavioral Reviews, 152, 105287. https://doi.org/10.1016/j.neubiorev.2023.105287

Mouton, P. R., Pakkenberg, B., Gundersen, H. J., & Price, D. L. (1994). Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. Journal of Chemical Neuroanatomy, 7(3), 185–190. https://doi.org/10.1016/0891-0618(94)90028-0

Herculano-Houzel, S. (2012b). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109(supplement_1), 10661–10668. https://doi.org/10.1073/pnas.1201895109

Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews. Neuroscience, 10(3), 211–223. https://doi.org/10.1038/nrn2573

Zerbi, V., Floriou-Servou, A., Markicevic, M., Vermeiren, Y., Sturman, O., Privitera, M., Von Ziegler, L., Ferrari, K. D., Weber, B., De Deyn, P. P., Wenderoth, N., & Bohacek, J. (2019). Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron, 103(4), 702-718.e5. https://doi.org/10.1016/j.neuron.2019.05.034

Fortress, A. M., Hamlett, E. D., Vazey, E. M., Aston-Jones, G., Cass, W. A., Boger, H. A., & Granholm, A. E. (2015). Designer receptors enhance memory in a mouse model of down syndrome. Journal of Neuroscience, 35(4), 1343–1353. https://doi.org/10.1523/jneurosci.2658-14.2015

Weinshenker, D. (2018). Long road to ruin: Noradrenergic dysfunction in neurodegenerative disease. Trends in Neurosciences, 41(4), 211–223. https://doi.org/10.1016/j.tins.2018.01.010

Krohn, F., Lancini, E., Ludwig, M., Leiman, M., Guruprasath, G., Haag, L., Panczyszyn, J., Düzel, E., Hämmerer, D., & Betts, M. (2023). Noradrenergic neuromodulation in ageing and disease. Neuroscience & Biobehavioral Reviews, 152, 105311. https://doi.org/10.1016/j.neubiorev.2023.105311

Graham, R. M. (1990). Adrenergic receptors: structure and function. Cleveland Clinic Journal of Medicine, 57(5), 481–491. https://doi.org/10.3949/ccjm.57.5.481

Jovanovic, P., Wang, Y., Vit, J., Novinbakht, E., Morones, N., Hogg, E., Tagliati, M., & Riera, C. E. (2022). Sustained chemogenetic activation of locus coeruleus norepinephrine neurons promotes dopaminergic neuron survival in synucleinopathy. PLoS ONE, 17(3), e0263074. https://doi.org/10.1371/journal.pone.0263074

Azam, S., Jakaria, Md., Kim, J., Ahn, J., Kim, I.-S., & Choi, D.-K. (2022). Group I mGluRs in Therapy and Diagnosis of Parkinson’s Disease: Focus on mGluR5 Subtype. Biomedicines, 10(4), 864. https://doi.org/10.3390/biomedicines10040864

Kang, Y., Henchcliffe, C., Verma, A., Vallabhajosula, S., He, B., Kothari, P. J., Pryor, K. O., & Mozley, P. D. (2019). 18F-FPEB PET/CT Shows mGluR5 Upregulation in Parkinson’s Disease. Journal of Neuroimaging, 29(1), 97–103. https://doi.org/10.1111/jon.12563

Armentero, M.-T., Fancellu, R., Nappi, G., Bramanti, P., & Blandini, F. (2006). Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiology of Disease, 22(1), 1–9. https://doi.org/10.1016/j.nbd.2005.09.010

Berg, D., Godau, J., Trenkwalder, C., Eggert, K., Csoti, Ii., Storch, A., Huber, H., Morelli-Canelo, M., Stamelou, M., Ries, V., Wolz, M., Schneider, C., Di Paolo, T., Gasparini, F., Hariry, S., Vandemeulebroecke, M., Abi-Saab, W., Cooke, K., Johns, D., & Gomez-Mancilla, B. (2011). AFQ056 treatment of levodopa-induced dyskinesias: Results of 2 randomized controlled trials. Movement Disorders, 26(7), 1243–1250. https://doi.org/10.1002/mds.23616

Isaacson, S. H., Hauser, R. A., Pahwa, R., Gray, D., & Duvvuri, S. (2023). Dopamine agonists in Parkinson’s disease: Impact of D1-like or D2-like dopamine receptor subtype selectivity and avenues for future treatment. Clinical Parkinsonism & Related Disorders, 9, 100212. https://doi.org/10.1016/j.prdoa.2023.100212

Khan, Z. U., Gutiérrez, A., Martín, R., Peñafiel, A., Rivera, A., & de la Calle, A. (2000). Dopamine D5 receptors of rat and human brain. Neuroscience, 100(4), 689–699. https://doi.org/10.1016/s0306-4522(00)00274-8

Zachry, J. E., Kutlu, M. G., Yoon, H. J., Leonard, M. Z., Chevée, M., Patel, D. D., Gaidici, A., Kondev, V., Thibeault, K. C., Bethi, R., Tat, J., Melugin, P. R., Isiktas, A. U., Joffe, M. E., Cai, D. J., Conn, P. J., Grueter, B. A., & Calipari, E. S. (2024). D1 and D2 medium spiny neurons in the nucleus accumbens core have distinct and valence-independent roles in learning. Neuron, 112(5), 835-849.e7. https://doi.org/10.1016/j.neuron.2023.11.023

Chuhma, N., Tanaka, K. F., Hen, R., & Rayport, S. (2011). Functional connectome of the striatal medium spiny neuron. Journal of Neuroscience, 31(4), 1183–1192. https://doi.org/10.1523/jneurosci.3833-10.2011

Zhou, F. (2020). The striatal medium spiny neurons: what they are and how they link with Parkinson’s disease. In Elsevier eBooks (pp. 395–412). https://doi.org/10.1016/b978-0-12-815950-7.00025-4

McIver, E. L., Chu, H., Atherton, J. F., Cosgrove, K. E., Kondapalli, J., Wokosin, D., Surmeier, D. J., & Mark, D. (2018). Chemogenetic restoration of autonomous subthalamic nucleus activity ameliorates Parkinsonian motor dysfunction. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/385443

Ramirez-Zamora, A., & Ostrem, J. L. (2018). Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease. JAMA Neurology, 75(3), 367. https://doi.org/10.1001/jamaneurol.2017.4321

Williams, N. R., Foote, K. D., & Okun, M. S. (2014). Subthalamic nucleus versus globus pallidus internus Deep Brain Stimulation: Translating the rematch into clinical practice. Movement Disorders Clinical Practice, 1(1), 24–35. https://doi.org/10.1002/mdc3.12004

Wang, Y., Gao, L., Chen, J., Li, Q., Huo, L., Wang, Y., Wang, H., & Du, J. (2021). Pharmacological modulation of NRF2/HO-1 signaling pathway as a therapeutic target of Parkinson’s disease. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.757161

Zgorzynska, E., Dziedzic, B., & Walczewska, A. (2021). An overview of the NRF2/ARE pathway and its role in neurodegenerative diseases. International Journal of Molecular Sciences, 22(17), 9592. https://doi.org/10.3390/ijms22179592

Bento‐Pereira, C., & Dinkova‐Kostova, A. T. (2020). Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson’s disease. Medicinal Research Reviews, 41(2), 785–802. https://doi.org/10.1002/med.21714

Wegiel, B., Nemeth, Z., Correa-Costa, M., Bulmer, A. C., & Otterbein, L. E. (2014). HEME oxygenase-1: A Metabolic Nike. Antioxidants and Redox Signaling, 20(11), 1709–1722. https://doi.org/10.1089/ars.2013.5667

Lithi, U. J., Laird, D. W., Ghassemifar, R., Wilton, S. D., & Moheimani, N. R. (2024). Microalgae as a source of bioavailable heme. Algal Research, 77, 103363. https://doi.org/10.1016/j.algal.2023.103363

Sun, W., Zheng, J., Ma, J., Wang, Z., Shi, X., Li, M., Huang, S., Hu, S., Zhao, Z., & Li, D. (2021). Increased plasma HEME oxygenase-1 levels in patients with Early-Stage Parkinson’s Disease. Frontiers in Aging Neuroscience, 13. https://doi.org/10.3389/fnagi.2021.621508

Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., & Jackson-Lewis, V. R. (2015b). Oxidative stress and Parkinson’s disease. Frontiers in Neuroanatomy, 9. https://doi.org/10.3389/fnana.2015.00091

Muñoz, M. D., De La Fuente, N., & Sánchez-Capelo, A. (2020b). TGF-Β/SMAD3 signalling modulates GABA Neurotransmission: Implications in Parkinson’s Disease. International Journal of Molecular Sciences, 21(2), 590. https://doi.org/10.3390/ijms21020590

Young, C. B., Reddy, V., & Sonne, J. (2023, July 24). Neuroanatomy, basal ganglia. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK537141/

Lanciego, J. L., Luquin, N., & Obeso, J. A. (2012). Functional neuroanatomy of the basal ganglia. Cold Spring Harbor Perspectives in Medicine, 2(12), a009621. https://doi.org/10.1101/cshperspect.a009621

Iring, A., Tóth, A., Baranyi, M., Otrokocsi, L., Módis, L. V., Gölöncsér, F., Varga, B., Hortobágyi, T., Bereczki, D., Dénes, Á., & Sperlágh, B. (2022). The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson’s disease: Signalling pathway and novel therapeutic targets. Pharmacological Research, 176, 106045. https://doi.org/10.1016/j.phrs.2021.106045

Tatsumi, E., Yamanaka, H., Kobayashi, K., Yagi, H., Sakagami, M., & Noguchi, K. (2014). RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. GLIA, 63(2), 216–228. https://doi.org/10.1002/glia.22745

Tan, E., Chao, Y., West, A., Chan, L., Poewe, W., & Jankovic, J. (2020). Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nature Reviews. Neurology, 16(6), 303–318. https://doi.org/10.1038/s41582-020-0344-4

Tansey, M. G., Wallings, R. L., Houser, M. C., Herrick, M. K., Keating, C. E., & Joers, V. (2022). Inflammation and immune dysfunction in Parkinson disease. Nature Reviews. Immunology, 22(11), 657–673. https://doi.org/10.1038/s41577-022-00684-6

Goshima, Y., Masukawa, D., Kasahara, Y., Hashimoto, T., & Aladeokin, A. C. (2019). L-DOPA and its receptor GPR143: Implications for pathogenesis and therapy in Parkinson’s disease. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01119

Schiaffino, M. V. (2010). Signaling pathways in melanosome biogenesis and pathology. International Journal of Biochemistry & Cell Biology, 42(7), 1094–1104. https://doi.org/10.1016/j.biocel.2010.03.023

Bueschbell, B., Manga, P., & Schiedel, A. C. (2022). The many faces of G Protein-Coupled Receptor 143, an atypical intracellular receptor. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/fmolb.2022.873777

Goshima, Y., Watanabe, S., Seki, E., Koga, M., Masukawa, D., Nakamura, F., Komori, T., & Arai, N. (2019). Immunoreactivity of a G protein-coupled l-DOPA receptor GPR143, in Lewy bodies. Neuroscience Research, 148, 49–53. https://doi.org/10.1016/j.neures.2018.12.004

Leinartaité, L., & Svenningsson, P. (2017). Folding underlies bidirectional role of GPR37/PAEL-R in Parkinson disease. Trends in Pharmacological Sciences, 38(8), 749–760. https://doi.org/10.1016/j.tips.2017.05.006

Meyer, R. C., Giddens, M. M., Schaefer, S. A., & Hall, R. A. (2013). GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9529–9534. https://doi.org/10.1073/pnas.1219004110

Watkins, L. R., & Orlandi, C. (2020). Orphan G protein coupled receptors in affective disorders. Genes, 11(6), 694. https://doi.org/10.3390/genes11060694

Marras, C., Beck, J. C., Bower, J. H., Roberts, E., Ritz, B., Ross, G. W., Abbott, R. D., Savica, R., Van Den Eeden, S. K., Willis, A. W., & Tanner, C. (2018). Prevalence of Parkinson’s disease across North America. Npj Parkinson S Disease, 4(1). https://doi.org/10.1038/s41531-018-0058-0

Parkinson’s Disease: challenges, progress, and promise. (n.d.). National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/current-research/focus-disorders/parkinsons-disease-research/parkinsons-disease-challenges-progress-and-promise

Downloads

Posted

2024-12-18

Categories