Preprint / Version 1

Measuring Spectral Power to Potentially Measure Correlations in the MMSE Test

##article.authors##

  • Ronav Gopal Briar Woods High School

DOI:

https://doi.org/10.58445/rars.2017

Keywords:

Alzheimer’s disease, Spectral power, EEG, MMSE Test, frontotemporal dementia

Abstract

Alzheimer’s disease and frontotemporal dementia are two types of neurological diseases claiming victims across the world. EEG offers a unique solution to this problem. This paper will explore the correlation between patient’s power density spectral values within frequency bands and MMSE scores to possibly determine a correlation regarding cognitive decline to predict neurological diseases within patients. A statistical analysis was performed on an EEG dataset from an MDPI article containing three patient samples (Alzheimer’s, frontotemporal dementia, and healthy controls). The data was processed into Google Sheets, where a two-sample unequal variance test was performed to measure the statistical difference between Alzheimer’s patients vs. healthy controls and frontotemporal dementia patients vs. healthy controls. The results show an interesting potential for EEG metrics in the potential prediction of neurological diseases.

References

Miltiadous, A., Tzimourta, K. D., Afrantou, T., Ioannidis, P., Grigoriadis, N., Tsalikakis, D. G., Angelidis, P., Tsipouras, M. G., Glavas, E., Giannakeas, N., & Tzallas, A. T. (2023). A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG, Data, 8(6), 95. https://doi.org/10.3390/data8060095

Laganà, V., Bruno, F., Altomari, N., Bruni, G., Smirne, N., Curcio, S., Mirabelli, M., Colao, R., Puccio, G., Frangipane, F., Cupidi, C., Torchia, G., Muraca, G., Malvaso, A., Addesi, D., Montesanto, A., Di Lorenzo, R., Bruni, A. C., & Maletta, R. (2022). Neuropsychiatric or Behavioral and Psychological Symptoms of Dementia (BPSD): Focus on prevalence and natural history in Alzheimer’s disease and frontotemporal dementia. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.832199

Joshi, V., & Nanavati, N. (2021). A Review of EEG Signal Analysis for Diagnosis of Neurological Disorders using Machine Learning. Journal of Biomedical Photonics & Engineering, 7(4). https://doi.org/10.18287/10.18287/JBPE21.07.040201

Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature reviews neuroscience, 12(2), 105-118. https://doi.org/10.1038/nrn2979

Van Deursen, J. A., Vuurman, E. F. P. M., Verhey, F. R. J., van Kranen-Mastenbroek, V. H. J. M., & Riedel, W. J. (2008). Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. Journal of neural transmission, 115, 1301-1311.https://doi.org/10.1007/s00702-008-0083-y

Kwak, Y. T. (2006). Quantitative EEG findings in different stages of Alzheimer’s disease. Journal of clinical neurophysiology, 23(5), 457-462. https://doi.org/10.1097/01.wnp.0000223453.47663.63.

Jeong, H. T., Youn, Y. C., Sung, H.-H., & Kim, S. Y. (2021). Power Spectral Changes of Quantitative EEG in the Subjective Cognitive Decline: Comparison of Community Normal Control Groups. Neuropsychiatric Disease and Treatment, 17, 2783–2790. https://doi.org/10.2147/ndt.s320130

Downloads

Posted

2024-11-27