Computational Exploration of Molecules to Enhance Fluorescence Lifetimes for Superior Forensic Utility
DOI:
https://doi.org/10.58445/rars.2010Keywords:
Molecules, Forensic, crime scenesAbstract
Latent blood visualizers are used in forensic science to detect traces of blood at crime scenes by reacting with it chemically to release an indicator, improving visualization of biofluids for documentation and analysis. However, many current latent blood visualizers—like luminol, leucomalachite green, leucocrystal violet, and fluorescein—require alternative light sources and environments, or have limited fluorescence lifetimes. This study focuses on the latter, exploring changes in molecular structure to increase fluorescence lifetime by examining molecules’ excitation energies, finding tetrasubstituted carbon bonds to be most effective in raising fluorescence lifetime.
References
(1) Kent, E. J. M.; Elliot, D. A.; Miskelly, G. M. Inhibition of Bleach-Induced Luminol Chemiluminescence. J Forensic Sci 2003, 48 (1), 64–67.
(2) Passi, N.; Garg, R. K.; Yadav, M.; Singh, R. S.; Kharoshah, M. A. Effect of Luminol and Bleaching Agent on the Serological and DNA Analysis from Bloodstain. Egyptian Journal of Forensic Sciences 2012, 2 (2), 54–61. https://doi.org/10.1016/j.ejfs.2012.04.003.
(3) Watkins_brown_luminol_bs.Pdf. https://www.bluestar-forensic.com/wp-content/uploads/2020/09/watkins_brown_luminol_bs.pdf (accessed 2024-11-03).
(4) Bodziak, W. J. Use of Leuco Crystal Violet to Enhance Shoe Prints in Blood. Forensic Sci Int 1996, 82 (1), 45–52. https://doi.org/10.1016/0379-0738(96)01965-2.
(5) Martin, L.; Cahill, C. Recovery of DNA from Latent Blood after Identification by Fluorescein. JOURNAL OF FORENSIC IDENTIFICATION 2004, 54, 660.
(6) Cheeseman, R.; DiMeo, L. Fluorescein as a Field-Worthy Latent Bloodstain Detection System | Office of Justice Programs. JOURNAL OF FORENSIC IDENTIFICATION 1995, 45 (6), 631–646.
(7) RDKit: Open-Source Cheminformatics. www.rdkit.org.
(8) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.; Chan, G. K.-L. PySCF: The Python-Based Simulations of Chemistry Framework. WIREs Computational Molecular Science 2018, 8 (1), e1340. https://doi.org/10.1002/wcms.1340.
(9) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research 2000, 28 (1), 235–242. https://doi.org/10.1093/nar/28.1.235.
(10) Kohn, W.; Becke, A. D.; Parr, R. G. Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100 (31), 12974–12980. https://doi.org/10.1021/jp960669l.
(11) Sharma, B.; Chenthamarakshan, V.; Dhurandhar, A.; Pereira, S.; Hendler, J. A.; Dordick, J. S.; Das, P. Accurate Clinical Toxicity Prediction Using Multi-Task Deep Neural Nets and Contrastive Molecular Explanations. Sci Rep 2023, 13 (1), 4908. https://doi.org/10.1038/s41598-023-31169-8.
(12) Juneja, S.; Sandhu, K. Fluorescein Toxicity – Rare but Dangerous. Indian Journal of Anaesthesia 2019, 63 (8), 674. https://doi.org/10.4103/ija.IJA_164_19.
(13) Šranková, M.; Dvořák, A.; Martínek, M.; Šebej, P.; Klán, P.; Vítek, L.; Muchová, L. Antiproliferative and Cytotoxic Activities of Fluorescein—A Diagnostic Angiography Dye. International Journal of Molecular Sciences 2022, 23 (3), 1504. https://doi.org/10.3390/ijms23031504.
Downloads
Posted
Categories
License
Copyright (c) 2024 Emilia Zhang
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.