Preprint / Version 1

Valproic Acid Exposure and its Impact on CNTNAP2 Gene Expression in the Development of Autism Spectrum Disorder

##article.authors##

  • Nyshita Chalasani Mission San Jose High School

DOI:

https://doi.org/10.58445/rars.1986

Keywords:

Autism Spectrum Disorder, CNTNAP2, Valproic Acid, Brain Development, Critical Period, Gene Expression, Personalized Treatments

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by both genetic and environmental factors. The CNTNAP2 gene, critical for neural development, has been associated with ASD, particularly when its expression is disrupted. Prenatal exposure to valproic acid (VPA), a teratogenic anticonvulsant, furthers this risk by altering CNTNAP2 expression during pregnancy. This review explores how CNTNAP2 function and VPA exposure interact to influence ASD development, with an emphasis on interactions between the environment and genetics. Potential therapeutic approaches, including gene therapy, HDAC inhibitors, and dietary interventions, offer hope for these effects. However, there are gaps in research, particularly in long-term outcomes and personalized treatments. This paper demonstrates the importance for targeted therapies addressing the intersection between genetics and environmental factors.

References

Ahn, Y., Narous, M., Tobias, R., Rho, J. M., & Mychasiuk, R. (2014). The ketogenic diet modifies

social and metabolic alterations identified in the prenatal valproic acid model of autism

spectrum disorder. Developmental neuroscience, 36(5), 371–380.

https://doi.org/10.1159/000362645

Bromley, R. L., Mawer, G. E., Briggs, M., Cheyne, C., Clayton-Smith, J., García-Fiñana, M.,

Kneen, R., Lucas, S. B., Shallcross, R., Baker, G. A., & Liverpool and Manchester

Neurodevelopment Group (2013). The prevalence of neurodevelopmental disorders in

children prenatally exposed to antiepileptic drugs. Journal of neurology, neurosurgery,

and psychiatry, 84(6), 637–643. https://doi.org/10.1136/jnnp-2012-304270

Castro, K., Baronio, D., Perry, I. S., Riesgo, R. D. S., & Gottfried, C. (2017). The effect of

ketogenic diet in an animal model of autism induced by prenatal exposure to valproic

acid. Nutritional neuroscience, 20(6), 343–350.

https://doi.org/10.1080/1028415X.2015.1133029

Christensen, J., Grønborg, T. K., Sørensen, M. J., Schendel, D., Parner, E. T., Pedersen, L. H.,

& Vestergaard, M. (2013). Prenatal valproate exposure and risk of autism spectrum

disorders and childhood autism. JAMA, 309(16), 1696–1703.

https://doi.org/10.1001/jama.2013.2270

Data and statistics on autism spectrum disorder. (2024, May 16). Autism Spectrum Disorder

(ASD). https://www.cdc.gov/autism/data-research/index.html

Elsabbagh, M., Divan, G., Koh, Y. J., Kim, Y. S., Kauchali, S., Marcín, C., Montiel-Nava, C.,

Patel, V., Paula, C. S., Wang, C., Yasamy, M. T., & Fombonne, E. (2012). Global

prevalence of autism and other pervasive developmental disorders. Autism research :

official journal of the International Society for Autism Research, 5(3), 160–179.

https://doi.org/10.1002/aur.239

Gaudio, M., Konstantara, E., Joy, M., Van Vlymen, J., & De Lusignan, S. (2022). Valproate

prescription to women of childbearing age in English primary care: repeated

cross-sectional analyses and retrospective cohort study. BMC Pregnancy and Childbirth,

(1). https://doi.org/10.1186/s12884-021-04351-x

Geschwind D. H. (2008). Autism: many genes, common pathways?. Cell, 135(3), 391–395.

https://doi.org/10.1016/j.cell.2008.10.016

Han, S., Tai, C., Jones, C. J., Scheuer, T., & Catterall, W. A. (2014). Enhancement of inhibitory

neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral

deficits in a mouse model of autism. Neuron, 81(6), 1282–1289.

https://doi.org/10.1016/j.neuron.2014.01.016

Harden C. L. (2013). In utero valproate exposure and autism: long suspected, finally proven.

Epilepsy currents, 13(6), 282–284. https://doi.org/10.5698/1535-7597-13.6.282

Keepers, G. A., Fochtmann, L. J., Anzia, J. M., Benjamin, S., Lyness, J. M., Mojtabai, R., Servis,

M., Walaszek, A., Buckley, P., Lenzenweger, M. F., Young, A. S., Degenhardt, A., & Hong,

S. (2020). The American Psychiatric Association Practice Guideline for the Treatment of

Patients with Schizophrenia. American Journal of Psychiatry, 177(9), 868–872.

https://doi.org/10.1176/appi.ajp.2020.177901

Lu, A. T., Dai, X., Martinez-Agosto, J. A., & Cantor, R. M. (2012). Support for calcium channel

gene defects in autism spectrum disorders. Molecular autism, 3(1), 18.

https://doi.org/10.1186/2040-2392-3-18

Mohammad-Rezazadeh, I., Frohlich, J., Loo, S. K., & Jeste, S. S. (2016). Brain connectivity in

autism spectrum disorder. Current Opinion in Neurology, 29(2), 137–147.

https://doi.org/10.1097/wco.0000000000000301

Peñagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H.,

Sonnenblick, L. I., Gruver, R., Almajano, J., Bragin, A., Golshani, P., Trachtenberg, J. T.,

Peles, E., & Geschwind, D. H. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal

migration abnormalities, and core autism-related deficits. Cell, 147(1), 235–246.

https://doi.org/10.1016/j.cell.2011.08.040

Peñagarikano, O., & Geschwind, D. H. (2012). What does CNTNAP2 reveal about autism

spectrum disorder?. Trends in molecular medicine, 18(3), 156–163.

https://doi.org/10.1016/j.molmed.2012.01.003

Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., Thiruvahindrapuram, B.,

Xu, X., Ziman, R., Wang, Z., Vorstman, J. A., Thompson, A., Regan, R., Pilorge, M.,

Pellecchia, G., Pagnamenta, A. T., Oliveira, B., Marshall, C. R., Magalhaes, T. R., Lowe,

J. K., … Scherer, S. W. (2014). Convergence of genes and cellular pathways

dysregulated in autism spectrum disorders. American journal of human genetics, 94(5),

–694. https://doi.org/10.1016/j.ajhg.2014.03.018

Poot M. (2015). Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders.

Molecular syndromology, 6(1), 7–22. https://doi.org/10.1159/000371594

Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: complex

functions to complex disorders. European journal of human genetics : EJHG, 22(2),

–178. https://doi.org/10.1038/ejhg.2013.100

Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A.

(2014). The familial risk of autism. JAMA, 311(17), 1770–1777.

https://doi.org/10.1001/jama.2014.4144

Scott-Van Zeeland, A. A., Abrahams, B. S., Alvarez-Retuerto, A. I., Sonnenblick, L. I., Rudie, J.

D., Ghahremani, D., Mumford, J. A., Poldrack, R. A., Dapretto, M., Geschwind, D. H., &

Bookheimer, S. Y. (2010). Altered functional connectivity in frontal lobe circuits is

associated with variation in the autism risk gene CNTNAP2. Science translational

medicine, 2(56), 56ra80. https://doi.org/10.1126/scitranslmed.3001344

Smith, V., & Brown, N. (2014). Prenatal valproate exposure and risk of autism spectrum

disorders and childhood autism. Archives of disease in childhood. Education and practice

edition, 99(5), 198. https://doi.org/10.1136/archdischild-2013-305636

St George-Hyslop, F., Kivisild, T., & Livesey, F. J. (2022). The role of contactin-associated

protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution.

Frontiers in molecular neuroscience, 15, 1017144.

https://doi.org/10.3389/fnmol.2022.1017144

Downloads

Posted

2024-11-14