Valproic Acid Exposure and its Impact on CNTNAP2 Gene Expression in the Development of Autism Spectrum Disorder
DOI:
https://doi.org/10.58445/rars.1986Keywords:
Autism Spectrum Disorder, CNTNAP2, Valproic Acid, Brain Development, Critical Period, Gene Expression, Personalized TreatmentsAbstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by both genetic and environmental factors. The CNTNAP2 gene, critical for neural development, has been associated with ASD, particularly when its expression is disrupted. Prenatal exposure to valproic acid (VPA), a teratogenic anticonvulsant, furthers this risk by altering CNTNAP2 expression during pregnancy. This review explores how CNTNAP2 function and VPA exposure interact to influence ASD development, with an emphasis on interactions between the environment and genetics. Potential therapeutic approaches, including gene therapy, HDAC inhibitors, and dietary interventions, offer hope for these effects. However, there are gaps in research, particularly in long-term outcomes and personalized treatments. This paper demonstrates the importance for targeted therapies addressing the intersection between genetics and environmental factors.
References
Ahn, Y., Narous, M., Tobias, R., Rho, J. M., & Mychasiuk, R. (2014). The ketogenic diet modifies
social and metabolic alterations identified in the prenatal valproic acid model of autism
spectrum disorder. Developmental neuroscience, 36(5), 371–380.
https://doi.org/10.1159/000362645
Bromley, R. L., Mawer, G. E., Briggs, M., Cheyne, C., Clayton-Smith, J., García-Fiñana, M.,
Kneen, R., Lucas, S. B., Shallcross, R., Baker, G. A., & Liverpool and Manchester
Neurodevelopment Group (2013). The prevalence of neurodevelopmental disorders in
children prenatally exposed to antiepileptic drugs. Journal of neurology, neurosurgery,
and psychiatry, 84(6), 637–643. https://doi.org/10.1136/jnnp-2012-304270
Castro, K., Baronio, D., Perry, I. S., Riesgo, R. D. S., & Gottfried, C. (2017). The effect of
ketogenic diet in an animal model of autism induced by prenatal exposure to valproic
acid. Nutritional neuroscience, 20(6), 343–350.
https://doi.org/10.1080/1028415X.2015.1133029
Christensen, J., Grønborg, T. K., Sørensen, M. J., Schendel, D., Parner, E. T., Pedersen, L. H.,
& Vestergaard, M. (2013). Prenatal valproate exposure and risk of autism spectrum
disorders and childhood autism. JAMA, 309(16), 1696–1703.
https://doi.org/10.1001/jama.2013.2270
Data and statistics on autism spectrum disorder. (2024, May 16). Autism Spectrum Disorder
(ASD). https://www.cdc.gov/autism/data-research/index.html
Elsabbagh, M., Divan, G., Koh, Y. J., Kim, Y. S., Kauchali, S., Marcín, C., Montiel-Nava, C.,
Patel, V., Paula, C. S., Wang, C., Yasamy, M. T., & Fombonne, E. (2012). Global
prevalence of autism and other pervasive developmental disorders. Autism research :
official journal of the International Society for Autism Research, 5(3), 160–179.
https://doi.org/10.1002/aur.239
Gaudio, M., Konstantara, E., Joy, M., Van Vlymen, J., & De Lusignan, S. (2022). Valproate
prescription to women of childbearing age in English primary care: repeated
cross-sectional analyses and retrospective cohort study. BMC Pregnancy and Childbirth,
(1). https://doi.org/10.1186/s12884-021-04351-x
Geschwind D. H. (2008). Autism: many genes, common pathways?. Cell, 135(3), 391–395.
https://doi.org/10.1016/j.cell.2008.10.016
Han, S., Tai, C., Jones, C. J., Scheuer, T., & Catterall, W. A. (2014). Enhancement of inhibitory
neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral
deficits in a mouse model of autism. Neuron, 81(6), 1282–1289.
https://doi.org/10.1016/j.neuron.2014.01.016
Harden C. L. (2013). In utero valproate exposure and autism: long suspected, finally proven.
Epilepsy currents, 13(6), 282–284. https://doi.org/10.5698/1535-7597-13.6.282
Keepers, G. A., Fochtmann, L. J., Anzia, J. M., Benjamin, S., Lyness, J. M., Mojtabai, R., Servis,
M., Walaszek, A., Buckley, P., Lenzenweger, M. F., Young, A. S., Degenhardt, A., & Hong,
S. (2020). The American Psychiatric Association Practice Guideline for the Treatment of
Patients with Schizophrenia. American Journal of Psychiatry, 177(9), 868–872.
https://doi.org/10.1176/appi.ajp.2020.177901
Lu, A. T., Dai, X., Martinez-Agosto, J. A., & Cantor, R. M. (2012). Support for calcium channel
gene defects in autism spectrum disorders. Molecular autism, 3(1), 18.
https://doi.org/10.1186/2040-2392-3-18
Mohammad-Rezazadeh, I., Frohlich, J., Loo, S. K., & Jeste, S. S. (2016). Brain connectivity in
autism spectrum disorder. Current Opinion in Neurology, 29(2), 137–147.
https://doi.org/10.1097/wco.0000000000000301
Peñagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H.,
Sonnenblick, L. I., Gruver, R., Almajano, J., Bragin, A., Golshani, P., Trachtenberg, J. T.,
Peles, E., & Geschwind, D. H. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal
migration abnormalities, and core autism-related deficits. Cell, 147(1), 235–246.
https://doi.org/10.1016/j.cell.2011.08.040
Peñagarikano, O., & Geschwind, D. H. (2012). What does CNTNAP2 reveal about autism
spectrum disorder?. Trends in molecular medicine, 18(3), 156–163.
https://doi.org/10.1016/j.molmed.2012.01.003
Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., Thiruvahindrapuram, B.,
Xu, X., Ziman, R., Wang, Z., Vorstman, J. A., Thompson, A., Regan, R., Pilorge, M.,
Pellecchia, G., Pagnamenta, A. T., Oliveira, B., Marshall, C. R., Magalhaes, T. R., Lowe,
J. K., … Scherer, S. W. (2014). Convergence of genes and cellular pathways
dysregulated in autism spectrum disorders. American journal of human genetics, 94(5),
–694. https://doi.org/10.1016/j.ajhg.2014.03.018
Poot M. (2015). Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders.
Molecular syndromology, 6(1), 7–22. https://doi.org/10.1159/000371594
Rodenas-Cuadrado, P., Ho, J., & Vernes, S. C. (2014). Shining a light on CNTNAP2: complex
functions to complex disorders. European journal of human genetics : EJHG, 22(2),
–178. https://doi.org/10.1038/ejhg.2013.100
Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A.
(2014). The familial risk of autism. JAMA, 311(17), 1770–1777.
https://doi.org/10.1001/jama.2014.4144
Scott-Van Zeeland, A. A., Abrahams, B. S., Alvarez-Retuerto, A. I., Sonnenblick, L. I., Rudie, J.
D., Ghahremani, D., Mumford, J. A., Poldrack, R. A., Dapretto, M., Geschwind, D. H., &
Bookheimer, S. Y. (2010). Altered functional connectivity in frontal lobe circuits is
associated with variation in the autism risk gene CNTNAP2. Science translational
medicine, 2(56), 56ra80. https://doi.org/10.1126/scitranslmed.3001344
Smith, V., & Brown, N. (2014). Prenatal valproate exposure and risk of autism spectrum
disorders and childhood autism. Archives of disease in childhood. Education and practice
edition, 99(5), 198. https://doi.org/10.1136/archdischild-2013-305636
St George-Hyslop, F., Kivisild, T., & Livesey, F. J. (2022). The role of contactin-associated
protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution.
Frontiers in molecular neuroscience, 15, 1017144.
Downloads
Posted
Categories
License
Copyright (c) 2024 Nyshita Chalasani
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.