Preprint / Version 1

Detecting Dark Matter

Exploring WIMP Interactions and Background Noise Mitigation in the LUX-ZEPLIN Experiment

##article.authors##

  • Seshivardhini Dulam Career Point

DOI:

https://doi.org/10.58445/rars.1963

Keywords:

dark matter, LUX-ZEPLIN experiment, xenon atoms

Abstract

The LUX-ZEPLIN experiment is a cutting-edge dark matter detector that endeavors to detect weakly interacting massive particles (WIMPs), long-sought as one of the prominent dark matter candidates. Located in the deep underground Sanford Underground Research Facility, it uses the biggest liquid xenon detector yet to capture rare interactions between dark matter particles and xenon atoms. This experiment hopes to differentiate between dark matter signals and background noise by detecting the light and electrons associated with these interactions, as one of the most sensitive experiments in search of dark matter, improvement in the shielding and analysis systems could provide new perspectives on the universe's unseen matter. This paper compares the LUX-ZEPLIN (LZ) dark matter detector with other detection technologies - in particular, solid-state detectors and liquid noble gas detectors. The critical analysis is set in motion by a detailed characterisation of the novel working principles of the LUX-ZEPLIN detector, pointing out the dual-phase xenon time projection chamber as a highly sensitive method for detecting Weakly Interacting Massive Particles, which is one of the leading candidates for dark matter. The paper compares LZ with solid-state detectors and other liquid noble gas systems, underlining the benefits that come with using a liquid xenon target, especially a very large target mass and the capability to distinguish between nuclear and electronic recoil events.

It delves deep into what makes LUX-ZEPLIN sensitive to dark matter interactions, including the sensitivity aspects that arise from background noise that is exceptionally low and placement deep underground at Sanford Underground Research Facility, improving the detection capability. The article details how cross-sections, especially the spin-independent WIMP-nucleon cross-section, are important and how precise measurement of these interactions plays a crucial role in refining dark matter search.

References

Wikipedia contributors. (2024, October 30). Dark matter. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Dark_matter

Akerib, D.S., et al. (2020). "The LUX-ZEPLIN (LZ) Experiment." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 953, 163047

Bertone, G., Hooper, D., & Silk, J. (2005). "Particle Dark Matter: Evidence, Candidates and Constraints." Physics Reports, 405(5-6), 279-390.

Cushman, P., et al. (2013). "Snowmass CF1 Summary: WIMP Dark Matter Direct Detection." Astroparticle Physics, 221, 85-97.

Abel, C., et al. (2017). "Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields." Physical Review X, 7(4), 041034.

Drukier, A., Freese, K., & Spergel, D.N. (1986). "Detecting Cold Dark Matter Candidates." Physical Review D, 33(12), 3495.

Tilly, J., et al. (2020). "Quantum Machine Learning in High-Energy Physics." Nature Reviews Physics, 2(4), 194-208.

Du, N., et al. (2018). "Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment." Physical Review Letters, 120(15), 151301.

Aalbers, J., et al. (2020). "First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment." Astroparticle Physics, 125, 102509.

Carleo, G., et al. (2019). "Machine Learning and the Physical Sciences." Reviews of Modern Physics, 91(4), 045002.

Balazs, C., & Papp, G. (2019). "Review of Recent Progress in Direct Dark Matter Searches." Universe, 5(8), 166.

Bhaskar, V., et al. (2021). "A Network of Quantum Sensors for Gravitational-Wave Detection." Physical Review D, 103(2), 025017.

Gaitskell, R., & McKinsey, D. (2014). The Large Underground Xenon (LUX) experiment. arXiv preprint arXiv:1402.7137.

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., & et al. (2019). Light dark matter searches with ionization signals in XENON1T—arXiv preprint arXiv:1903.03026.

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., & et al. (2018). Dark matter search results from a one-ton-year exposure of XENON1T. arXiv preprint arXiv:1802.06039.

Akerib, D. S., Alsum, S., Araujo, H. M., Bai, X., & et al. (2017). Results from a search for dark matter in the complete LUX exposure. arXiv preprint arXiv:1703.09144.

University of Michigan. (2023, July 6). LZ experiment sets new record in search for dark matter. University of Michigan News.

https://www.ucl.ac.uk/news/headlines/2024/aug/lz-experiment-sets-new-record-search-dark-matter University College London. (2024, August). LZ experiment sets new record in search for dark matter. UCL News.

Bertone, G., & Hooper, D. (2018). “History of Dark Matter.” Reviews of Modern Physics, 90(4), 123-149.

Aprile, E., et al. (2019). “Dark Matter Search Results from the XENON1T Experiment.” Physical Review Letters, 123, 251801.

Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., Anderson, K. S. J., & et al. (2006). The fourth data release of the Sloan Digital Sky Survey. The Astrophysical Journal Supplement Series, 162(1), 38-48. https://iopscience.iop.org/article/10.1086/508162/pdf

Wikipedia contributors. (2024, October 30). Gravitational lens. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Gravitational_lens

Wikipedia contributors. (2024, October 30). Cosmic microwave background. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Cosmic_microwave_background

Wikipedia contributors. (2024, October 30). Weakly interacting massive particles. Wikipedia, The Free Encyclopaedia https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle

DePorzio, N., Kim, D., Lee, J., & Wierman, J. (2022). Hunting for dark photon dark matter in superconducting nanowire devices. arXiv preprint arXiv:2212.02479. https://arxiv.org/pdf/2212.02479

Wikipedia contributors. (2024, October 30). Axion. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Axion

Yuan, C., Singh, S., & Yang, M. (2024). Exploring dark matter interactions with pulsar timing arrays. arXiv preprint arXiv:2404.19322. https://arxiv.org/pdf/2404.19322

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., & et al. (2019). Excess electronic recoil events in XENON1T. arXiv preprint arXiv:1910.09124. https://arxiv.org/pdf/1910.09124

Wikipedia contributors. (2024, October 30). XENON. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/XENON

Akerib, D. S., Alsum, S., Araujo, H. M., Bai, X., & et al. (2017). Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment. arXiv preprint arXiv:1710.06650. https://arxiv.org/pdf/1710.06650

Akerib, D. S., Alsum, S., Araujo, H. M., Bai, X., & et al. (2020). Results of a search for sub-GeV dark matter using 2013 LUX data. Physical Review D, 101(5), 052002. https://link.aps.org/accepted/10.1103/PhysRevD.101.052002

Chen, X., Huang, G., Li, Y., Wang, Q., & Zhang, F. (2022). Searching for new physics with dark matter detection in electron recoil. arXiv preprint arXiv:2211.17120. https://arxiv.org/pdf/2211.17120

Wikipedia contributors. (2024, October 30). Cross section (physics). Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Cross_section_(physics)

Chepel, V., & Araujo, H. (2013). Liquid noble gas detectors for low energy particle physics. Journal of Instrumentation, 8(4), R04001. https://dpl6hyzg28thp.cloudfront.net/media/Liquid_noble_gas_detectors_for_low_energy_particle_physics.pdf

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., & et al. (2018). Dark matter search results from a one-ton-year exposure of XENON1T. arXiv preprint arXiv:1801.01597. https://arxiv.org/abs/1801.01597

Akerib, D. S., Alsum, S., Araujo, H. M., Bai, X., & et al. (2016). Results from a search for dark matter in the LUX experiment. arXiv preprint arXiv:1605.06262. https://arxiv.org/pdf/1605.06262

Zhao, Y., Li, T., Zhang, X., Wang, J., & et al. (2023). Recent developments in direct detection experiments for dark matter. arXiv preprint arXiv:2304.05428. https://arxiv.org/pdf/2304.05428

Yang, H., Chen, Z., Lin, Q., & Li, S. (2024). Advances in dark matter detection technologies. arXiv preprint arXiv:2406.12874v2. https://arxiv.org/html/2406.12874v2

Wikipedia contributors. (2024, October 30). Electroluminescence. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Electroluminescence

axter, D., Buckley, M. R., & et al. (2021). Recommended conventions for reporting results from direct dark matter searches. arXiv preprint arXiv:2102.06281. https://arxiv.org/abs/2102.06281

Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., & et al. (2019). Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T. arXiv preprint arXiv:1904.08979. https://arxiv.org/abs/1904.08979

Bernlohr, K., Breuhaus, M., & Meagher, K. (2021). The optimization of dark matter detection sensitivity in large-scale observatories. arXiv preprint arXiv:2106.06622.https://arxiv.org/abs/2106.06622

Undagoitia, T. M., & Rauch, L. (2015). Dark matter direct-detection experiments. arXiv preprint arXiv:1412.4660.https://arxiv.org/pdf/1412.4660

Fermilab. (2000). Technical design report: A future facility for proton-proton collisions at Fermilab. Fermilab Technical Memorandum 2621.

Penn, M. A. (2008). Search for dark matter with the Cryogenic Dark Matter Search (CDMS) II experiment. Stanford Linear Accelerator Centre. https://www.slac.stanford.edu/exp/cdms/ScienceResults/Theses/penn.pdf

Wikipedia contributors. (2024, October 30). Cryocooler. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Cryocooler

Boxer, B. (2023). Status of the LZ experiment. Presented at the TAUP 2023 Conference.https://indico.cern.ch/event/1199289/contributions/5449533/attachments/2703372/4692543/TAUP_2023_Status_of_the_LZ%20Experiment_BBoxer%20.pdf

Lin, M., Li, Z., & Wang, Q. (2023). Investigation of heat transfer mechanisms in liquid noble gas detectors for dark matter searches. International Journal of Heat and Mass Transfer, 198, 123-138.

Chacko, Z., Cui, Y., Hong, W., & Li, J. (2022). Constraining dark matter scattering with gas in dwarf galaxies. arXiv preprint arXiv:2205.07336.https://arxiv.org/abs/2205.07336

Aprile, E., et al. (2015). Physics reach of the XENON1T dark matter experiment. arXiv preprint arXiv:1511.08385.https://arxiv.org/pdf/1511.08385

Luo, M., Xu, Y., & Zhang, J. (2024). New insights into the axion-photon interaction. arXiv preprint arXiv:2405.14732. https://arxiv.org/abs/2405.14732

Akerib, D. S., et al. (2018). Results from a search for dark matter in LUX with 2017 exposure. Physical Review Letters, 121(11), 111302.https://link.aps.org/accepted/10.1103/PhysRevLett.121.111302

Gaitskell, R., & McKinsey, D. (2014). The Large Underground Xenon (LUX) experiment. arXiv preprint arXiv:1402.7137.https://arxiv.org/pdf/1402.7137

Akerib, D. S., et al. (2017). Results from a search for dark matter in the complete LUX exposure. arXiv preprint arXiv:1703.09144.https://arxiv.org/pdf/1703.09144

Aprile, E., et al. (2019). Light dark matter search with ionisation signals in XENON1T. arXiv preprint arXiv:1903.03026.https://arxiv.org/pdf/1903.03026

Boddy, K. K., Feng, J. L., Kaplinghat, M., Tait, T. M. P., & Yu, H.-B. (2015). Self-interacting dark matter from a unified framework of hidden forces. arXiv preprint arXiv:1502.02667. https://ar5iv.labs.arxiv.org/html/1502.02667

University College London. (2024, August). LZ experiment sets new record in search for dark matter. UCL News.https://www.ucl.ac.uk/news/2024/aug/lz-experiment-sets-new-record-search-dark-matter

LUX-ZEPLIN Collaboration. (2019). LZ at PASCOS 2019: Status update.https://lz.lbl.gov/wp-content/uploads/sites/6/2019/09/190702_-LZ-at-PASCOS-2019.pdf

Wikipedia contributors. (2024, October 30). Helioscope. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Helioscope

Wikipedia contributors. (2024, October 30). Sterile neutrino. Wikipedia, The Free Encyclopaedia https://en.wikipedia.org/wiki/Sterile_neutrino

Wikipedia contributors. (2024, October 30). Supersymmetry. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Supersymmetry

Wikipedia contributors. (2024, October 30). Quantum chromodynamics. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Quantum_chromodynamics

Wikipedia contributors. (2024, October 30). Graviton. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Graviton

Wikipedia contributors. (2024, October 30). Strong CP problem. Wikipedia, The Free Encyclopaedia. https://en.wikipedia.org/wiki/Strong_CP_problem

Charles, E., Mott, A., Rodd, N. L., & Slatyer, T. R. (2017). Sensitivity projections for indirect dark matter searches with future gamma-ray experiments. arXiv preprint arXiv:1710.11091. https://arxiv.org/abs/1710.11091

Additional Files

Posted

2024-11-13

Categories