Preprint / Version 1

Will mangrove forests survive sea level rise caused by anthropogenic climate change?


  • Alexander Huang Polygence



Mangrove forest, Sea level rise, climate change


Mangroves, forests that grow in coastal zones, provide many benefits to humans and the environment. They are some of the oldest forests in the world, having persisted through environmental changes over millennia. A key factor of their survivability is peat accretion, a process in which mangrove soil accumulates in layers in response to rising sea levels. As ocean levels rise, water currents transport sediment to mangrove forests, which accumulates in the soil along with decomposing organic matter to form peat. Newly formed layers of peat increase soil elevations, and mangrove forests continue to grow at these higher elevations. Most records of peat accretion are within the context of historical sea level rise caused by natural climate change. Only in the past few centuries have sea levels risen at unnatural rates, caused by human impacts on climate change. This paper aims to understand how contemporary changes in sea level will affect the process of peat accretion in mangrove forests. Specifically, whether mangrove forests will survive anthropogenic sea level rise is addressed by comparing current peat accretion rates found in the literature to projected future sea level rise rates. Mangrove forests’ short-term survival is variable, but accretion will inevitably fall behind sea level rise in the future if climate change is not addressed, after which mangrove forests will be forced inland. By addressing these and similar problems faced by mangrove forests, we will gain a better understanding of actions to take to protect mangrove forests from unprecedented sea level rise.


Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313-322.

Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Klumpp, D. W. (2005). Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine, Coastal and Shelf Science, 63(4), 605-618.

Bender, M. A., Knutson, T. R., Tuleya, R. E., Sirutis, J. J., Vecchi, G. A., Garner, S. T., & Held, I. M. (2010). Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science, 327(5964), 454-458.

Cahoon, D. R., & Lynch, J. C. (1997). Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves and Salt Marshes, 1(3), 173-186.

Cahoon, D. R., Hensel, P., Rybczyk, J., McKee, K. L., Proffitt, C. E., & Perez, B. C. (2003). Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology, 91(6), 1093-1105.

Cahoon, D., McKee, K., & Morris, J. (2020). How Plants Influence Resilience of Salt Marsh and Mangrove Wetlands to Sea-Level Rise

Callaway, J. C., DeLaune, R. D., & W. H. Patrick, J. (1997). Sediment Accretion Rates from Four Coastal Wetlands along the Gulf of Mexico. Journal of Coastal Research, 13(1), 181-191.

Ellison, J. C., & Stoddart, D. R. (1991). Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. Journal of Coastal Research, 7, 151-165.

Ewel, K. C., Bourgeois, J. A., Cole, T. G., & Zheng, S. (1998). Variation in Environmental Characteristics and Vegetation in High-Rainfall Mangrove Forests, Kosrae, Micronesia. Global Ecology and Biogeography Letters, 7(1), 49-56.

Feller, I. C., Lovelock, C. E., Berger, U., McKee, K. L., Joye, S. B., & Ball, M. C. (2010). Biocomplexity in Mangrove Ecosystems. Annual Review of Marine Science, 2(1), 395-417.

IPCC, 2019: Technical Summary [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, E. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 39-69.

Jimenez, J. A., Lugo, A. E., & Cintron, G. (1985). Tree Mortality in Mangrove Forests. Biotropica, 17(3), 177-185.

Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M., Rasmussen, D. J., Strauss, B. H., & Tebaldi, C. (2014). Probabilistic 21st and 22nd Century Sea‐level projections at a global network of tide‐gauge sites. Earth's Future, 2(8), 383–406.

Krauss, K. W., Cahoon, D. R., Allen, J. A., Ewel, K. C., Lynch, J. C., & Cormier, N. (2010). Surface Elevation Change and Susceptibility of Different Mangrove Zones to Sea-Level Rise on Pacific High Islands of Micronesia. Ecosystems, 13(1), 129-143.

Marx, S. K., Knight, J. M., Dwyer, P. G., Child, D. P., Hotchkis, M. A. C., & Zawadzki, A. (2020). Examining the response of an eastern Australian mangrove forest to changes in hydro-period over the last century. Estuarine, Coastal and Shelf Science, 241, 106813.

McKee, K. L. and Faulkner, Patricia L. (2000). "Mangrove Peat Analysis and Reconstruction of Vegetation History at the Pelican Cays, Belize." Atoll Research Bulletin, 468 47–58.

McKee, K. L., Cahoon, D. R., & Feller, I. C. (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16(5), 545-556.

McKee, K. L. (2011). Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science, 91(4), 475-483.

Novizantara, A., Mulyadi, A., Tang, U.M., Putra, R.M. (2022). Calculating economic valuation of mangrove forest in Bengkalis Regency, Indonesia. International Journal of Sustainable Development and Planning, Vol. 17, No. 5, pp. 1629-1634.

Randall, W. P., Ron, D. D., & White, J. R. (1994). Holocene Sea-Level Rise and the Fate of Mangrove Forests within the Wider Caribbean Region. Journal of Coastal Research, 10(4), 1077-1086.

Rogers, K., Wilton, K. M., & Saintilan, N. (2006). Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science, 66(3), 559-569.

Saad, S., Husain, M. L., Yaacob, R., & Asano, T. (1999). Sediment accretion and variability of sedimentological characteristics of a tropical estuarine mangrove: Kemaman, Terengganu, Malaysia. Mangroves and Salt Marshes, 3(1), 51-58.

Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., & Horton, B. P. (2020). Thresholds of mangrove survival under rapid sea level rise. Science, 368(6495), 1118-1121.

Sanders, C. J., Smoak, J. M., Naidu, A. S., & Patchineelam, S. R. (2008). Recent Sediment Accumulation in a Mangrove Forest and Its Relevance to Local Sea-Level Rise (Ilha Grande, Brazil). Journal of Coastal Research, 2008(242), 533-536, 534.

Scholl, D. W. (1964). Recent sedimentary record in mangrove swamps and rise in sea level over the southwestern coast of Florida: Part 2. Marine Geology, 2(4), 343-364.

Smoak, J. M., & Patchineelam, S. R. (1999). Sediment mixing and accumulation in a mangrove ecosystem: evidence from 210Pb, 234Th and 7Be. Mangroves and Salt Marshes, 3(1), 17-27.

Stern, D. I., & Kaufmann, R. K. (2014). Anthropogenic and natural causes of climate change. Climatic Change, 122(1), 257-269.

Whelan, K. R. T., Smith Iii, T. J., Cahoon, D. R., Lynch, J. C., & Anderson, G. H. (2005). Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth. Estuaries, 28(6), 833-843.

Whelan, K. R. T., Smith, T. J., Anderson, G. H., & Ouellette, M. L. (2009). Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands, 29(1), 16-23.

Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science, 8(1), 243-266.