Preprint / Version 1

How do animal fear models inform our understanding of glutamate regulation by astrocytes in humans developing PTSD, and what similarities can be identified using these models for prediction and treatment possibilities?

##article.authors##

  • Anugraha Pillai Tesla STEM High School

DOI:

https://doi.org/10.58445/rars.1654

Keywords:

posttraumatic stress disorder, mental health, Psychology

Abstract

Post-Traumatic Stress Disorder (PTSD) is an involved psychiatric mental illness that develops as a response to a traumatic event or series of scarring events. PTSD is one of the top three most common mental health illnesses, in fact, 7-8% of the global population will experience PTSD at some point in their lives. Understanding the neurobiological basis of PTSD would be important for clinical research behind possible treatment plans to help individuals relieve themselves of prior trauma. This research article will discuss the importance of astrocytes and their function in terms of regulating glutamate. By analyzing the PTSD-like behaviors from animal fear models, we will be connecting the astrocyte function for regulating glutamate for the pathogenesis of PTSD.

References

Agorastos, A., & Olff, M. (2020). Traumatic stress and the circadian system: Neurobiology, timing and treatment of posttraumatic chronodisruption. European Journal of Psychotraumatology, 11(1), 1833644. https://doi.org/10.1080/20008198.2020.1833644

Albrecht, J., Sidoryk-Węgrzynowicz, M., Zielińska, M., & Aschner, M. (2010). Roles of glutamine in neurotransmission. Neuron Glia Biology, 6(4), 263–276. https://doi.org/10.1017/s1740925x11000093

Ardi, Z., Ritov, G., Lucas, M., & Richter-Levin, G. (2013). The effects of a reminder of underwater trauma on behaviour and memory-related mechanisms in the rat dentate gyrus. The International Journal of Neuropsychopharmacology, 17(04), 571–580. https://doi.org/10.1017/s1461145713001272

Atrooz, F., Alkadhi, K. A., & Salim, S. (2021). Understanding stress: Insights from rodent models. Current Research in Neurobiology, 2(1), 100013. https://doi.org/10.1016/j.crneur.2021.100013

Averill, L. A., Purohit, P., Averill, C. L., Boesl, M. A., Krystal, J. H., & Abdallah, C. G. (2017). Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neuroscience Letters, 649(1), 147–155. https://doi.org/10.1016/j.neulet.2016.11.064

Borghans, B. (2015). Animal models for posttraumatic stress disorder: An overview of what is used in research. World Journal of Psychiatry, 5(4), 387. https://doi.org/10.5498/wjp.v5.i4.387

Bremner, J. D. (2006). Traumatic stress: Effects on the brain. Dialogues in Clinical Neuroscience, 8(4), 445–461. https://doi.org/10.31887/DCNS.2006.8.4/jbremner

Burda, J. E., Bernstein, A. M., & Sofroniew, M. V. (2016). Astrocyte roles in traumatic brain injury. Experimental Neurology, 275(1), 305–315. https://doi.org/10.1016/j.expneurol.2015.03.020

Çalışkan, G., Müller, A., & Albrecht, A. (2020). Long-Term impact of early-life stress on hippocampal plasticity: Spotlight on astrocytes. International Journal of Molecular Sciences, 21(14), 4999. https://doi.org/10.3390/ijms21144999

Cleveland Clinic. (2022, April 25). Glutamate: What it is & function. Cleveland Clinic. https://my.clevelandclinic.org/health/articles/22839-glutamate

Ding, Z.-B., Song, L.-J., Wang, Q., Kumar, G., Yan, Y.-Q., & Ma, C.-G. (2021). Astrocytes: A double-edged sword in neurodegenerative diseases. Neural Regeneration Research, 16(9), 1702–1710. https://doi.org/10.4103/1673-5374.306064

Dunsmoor, J. E., Cisler, J. M., Fonzo, G. A., Creech, S. K., & Nemeroff, C. B. (2022). Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron, 110(11), 1754–1776. https://doi.org/10.1016/j.neuron.2022.03.001

Fitzgerald, J. M., DiGangi, J. A., & Phan, K. L. (2018). Functional neuroanatomy of emotion and its regulation in PTSD. Harvard Review of Psychiatry, 26(3), 116–128. https://doi.org/10.1097/hrp.0000000000000185

Hathaway, B. (2017a, July 17). New PTSD study identifies potential path to treatment. YaleNews. https://news.yale.edu/2017/07/17/new-ptsd-study-identifies-potential-path-treatment#:~:text=The%20new%20study%20reports%20that%20positron%20emission

Hathaway, B. (2017b, July 17). New PTSD study identifies potential path to treatment. YaleNews. https://news.yale.edu/2017/07/17/new-ptsd-study-identifies-potential-path-treatment#:~:text=The%20new%20study%20reports%20that%20positron%20emission

Kim, S., Pajarillo, E., Nyarko-Danquah, I., Aschner, M., & Lee, E. (2023). Role of astrocytes in parkinson’s disease associated with genetic mutations and neurotoxicants. Cells, 12(4), 622. https://doi.org/10.3390/cells12040622

Li, B., Zhang, D., & Verkhratsky, A. (2022). Astrocytes in post-traumatic stress disorder. Neuroscience Bulletin, 38(1). https://doi.org/10.1007/s12264-022-00845-6

Li, C.-T., Yang, K.-C., & Lin, W.-C. (2019). Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Frontiers in Psychiatry, 9(1). https://doi.org/10.3389/fpsyt.2018.00767

Li, L., Acioglu, C., Heary, R. F., & Elkabes, S. (2021). Role of astroglial toll-like receptors (tlrs) in central nervous system infections, injury and neurodegenerative diseases. Brain, Behavior, and Immunity, 91(1), 740–755. https://doi.org/10.1016/j.bbi.2020.10.007

Li, Y., Li, L., Wu, J., Zhu, Z., Feng, X., Qin, L., Zhu, Y., Sun, L., Liu, Y., Qiu, Z., Duan, S., & Yu, Y.-Q. (2020). Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. ELife, 9(1). https://doi.org/10.7554/elife.57155

Lisieski, M. J., Eagle, A. L., Conti, A. C., Liberzon, I., & Perrine, S. A. (2018). Single-Prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Frontiers in Psychiatry, 9(1). https://doi.org/10.3389/fpsyt.2018.00196

Modrak, C. G., & Knackstedt, L. A. (2023). Footshock - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/footshock#:~:text=First%20gaining%20recognition%20in%201908

Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 1161–1169. https://doi.org/10.1038/nn.2647

Nishimura, K. J., Poulos, A. M., Drew, M. R., & Rajbhandari, A. K. (2022). Know thy SEFL: Fear sensitization and its relevance to stressor-related disorders. Neuroscience & Biobehavioral Reviews, 142(1), 104884. https://doi.org/10.1016/j.neubiorev.2022.104884

Pal, M. M. (2021). Glutamate: The master neurotransmitter and its implications in chronic stress and mood disorders. Frontiers in Human Neuroscience, 15(1). https://doi.org/10.3389/fnhum.2021.722323

Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., Anthony-Samuel LaMantia, McNamara, J. O., & S Mark Williams. (2001). Neuroglial cells. Nih.gov; Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK10869/

Raber, J., Arzy, S., Bertolus, J. B., Depue, B., Haas, H. E., Hofmann, S. G., Kangas, M., Kensinger, E., Lowry, C. A., Marusak, H. A., Minnier, J., Mouly, A.-M., Mühlberger, A., Norrholm, S. D., Peltonen, K., Pinna, G., Rabinak, C., Shiban, Y., Soreq, H., & van der Kooij, M. A. (2019). Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neuroscience & Biobehavioral Reviews, 105, 136–177. https://doi.org/10.1016/j.neubiorev.2019.03.015

Richter-Levin, G., Stork, O., & Schmidt, M. V. (2019). Animal models of PTSD: A challenge to be met. Molecular Psychiatry, 24(8), 1135–1156. https://doi.org/10.1038/s41380-018-0272-5

Sheldon, A. L., & Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51(6-7), 333–355. https://doi.org/10.1016/j.neuint.2007.03.012

Souza, R. R., Noble, L. J., & McIntyre, C. K. (2017). Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD. Frontiers in Pharmacology, 8(1). https://doi.org/10.3389/fphar.2017.00615

Tannenbaum, M. B., Hepler, J., Zimmerman, R. S., Saul, L., Jacobs, S., Wilson, K., & Albarracín, D. (2015). Appealing to fear: A meta-analysis of fear appeal effectiveness and theories. Psychological Bulletin, 141(6), 1178–1204. https://doi.org/10.1037/a0039729

Wang, X., Takano, T., & Nedergaard, M. (2009). Astrocytic calcium signaling: Mechanism and implications for functional brain imaging. Methods in Molecular Biology (Clifton, N.J.), 489(1), 93–109. https://doi.org/10.1007/978-1-59745-543-5_5

Watanabe, S., Alzahra Al Omran, Shao, A. S., Xue, C., Zhang, Z., Zhang, J., Davies, D. L., Shao, X. M., Watanabe, J., & Liang, J. (2022). Dihydromyricetin improves social isolation-induced cognitive impairments and astrocytic changes in mice. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-09814-5

Wei, D. C., & Morrison, E. H. (2023, May 1). Histology, astrocytes. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK545142/#:~:text=Astrocytes%20are%20a%20subtype%20of

What is glutamate? (n.d.). Mental Health America. https://mhanational.org/what-glutamate

World Health Organization. (2022, June 8). Mental disorders. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/mental-disorders

Zhang, L., Wang, Q., Xian, X., Qi, J., Liu, L., & Li, W. (2018). Astrocytes enhance the tolerance of rat cortical neurons to glutamate excitotoxicity. Molecular Medicine Reports, 1(1). https://doi.org/10.3892/mmr.2018.9799

Additional Files

Posted

2024-09-21