How do animal fear models inform our understanding of glutamate regulation by astrocytes in humans developing PTSD, and what similarities can be identified using these models for prediction and treatment possibilities?
DOI:
https://doi.org/10.58445/rars.1654Keywords:
posttraumatic stress disorder, mental health, PsychologyAbstract
Post-Traumatic Stress Disorder (PTSD) is an involved psychiatric mental illness that develops as a response to a traumatic event or series of scarring events. PTSD is one of the top three most common mental health illnesses, in fact, 7-8% of the global population will experience PTSD at some point in their lives. Understanding the neurobiological basis of PTSD would be important for clinical research behind possible treatment plans to help individuals relieve themselves of prior trauma. This research article will discuss the importance of astrocytes and their function in terms of regulating glutamate. By analyzing the PTSD-like behaviors from animal fear models, we will be connecting the astrocyte function for regulating glutamate for the pathogenesis of PTSD.
References
Agorastos, A., & Olff, M. (2020). Traumatic stress and the circadian system: Neurobiology, timing and treatment of posttraumatic chronodisruption. European Journal of Psychotraumatology, 11(1), 1833644. https://doi.org/10.1080/20008198.2020.1833644
Albrecht, J., Sidoryk-Węgrzynowicz, M., Zielińska, M., & Aschner, M. (2010). Roles of glutamine in neurotransmission. Neuron Glia Biology, 6(4), 263–276. https://doi.org/10.1017/s1740925x11000093
Ardi, Z., Ritov, G., Lucas, M., & Richter-Levin, G. (2013). The effects of a reminder of underwater trauma on behaviour and memory-related mechanisms in the rat dentate gyrus. The International Journal of Neuropsychopharmacology, 17(04), 571–580. https://doi.org/10.1017/s1461145713001272
Atrooz, F., Alkadhi, K. A., & Salim, S. (2021). Understanding stress: Insights from rodent models. Current Research in Neurobiology, 2(1), 100013. https://doi.org/10.1016/j.crneur.2021.100013
Averill, L. A., Purohit, P., Averill, C. L., Boesl, M. A., Krystal, J. H., & Abdallah, C. G. (2017). Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neuroscience Letters, 649(1), 147–155. https://doi.org/10.1016/j.neulet.2016.11.064
Borghans, B. (2015). Animal models for posttraumatic stress disorder: An overview of what is used in research. World Journal of Psychiatry, 5(4), 387. https://doi.org/10.5498/wjp.v5.i4.387
Bremner, J. D. (2006). Traumatic stress: Effects on the brain. Dialogues in Clinical Neuroscience, 8(4), 445–461. https://doi.org/10.31887/DCNS.2006.8.4/jbremner
Burda, J. E., Bernstein, A. M., & Sofroniew, M. V. (2016). Astrocyte roles in traumatic brain injury. Experimental Neurology, 275(1), 305–315. https://doi.org/10.1016/j.expneurol.2015.03.020
Çalışkan, G., Müller, A., & Albrecht, A. (2020). Long-Term impact of early-life stress on hippocampal plasticity: Spotlight on astrocytes. International Journal of Molecular Sciences, 21(14), 4999. https://doi.org/10.3390/ijms21144999
Cleveland Clinic. (2022, April 25). Glutamate: What it is & function. Cleveland Clinic. https://my.clevelandclinic.org/health/articles/22839-glutamate
Ding, Z.-B., Song, L.-J., Wang, Q., Kumar, G., Yan, Y.-Q., & Ma, C.-G. (2021). Astrocytes: A double-edged sword in neurodegenerative diseases. Neural Regeneration Research, 16(9), 1702–1710. https://doi.org/10.4103/1673-5374.306064
Dunsmoor, J. E., Cisler, J. M., Fonzo, G. A., Creech, S. K., & Nemeroff, C. B. (2022). Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron, 110(11), 1754–1776. https://doi.org/10.1016/j.neuron.2022.03.001
Fitzgerald, J. M., DiGangi, J. A., & Phan, K. L. (2018). Functional neuroanatomy of emotion and its regulation in PTSD. Harvard Review of Psychiatry, 26(3), 116–128. https://doi.org/10.1097/hrp.0000000000000185
Hathaway, B. (2017a, July 17). New PTSD study identifies potential path to treatment. YaleNews. https://news.yale.edu/2017/07/17/new-ptsd-study-identifies-potential-path-treatment#:~:text=The%20new%20study%20reports%20that%20positron%20emission
Hathaway, B. (2017b, July 17). New PTSD study identifies potential path to treatment. YaleNews. https://news.yale.edu/2017/07/17/new-ptsd-study-identifies-potential-path-treatment#:~:text=The%20new%20study%20reports%20that%20positron%20emission
Kim, S., Pajarillo, E., Nyarko-Danquah, I., Aschner, M., & Lee, E. (2023). Role of astrocytes in parkinson’s disease associated with genetic mutations and neurotoxicants. Cells, 12(4), 622. https://doi.org/10.3390/cells12040622
Li, B., Zhang, D., & Verkhratsky, A. (2022). Astrocytes in post-traumatic stress disorder. Neuroscience Bulletin, 38(1). https://doi.org/10.1007/s12264-022-00845-6
Li, C.-T., Yang, K.-C., & Lin, W.-C. (2019). Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Frontiers in Psychiatry, 9(1). https://doi.org/10.3389/fpsyt.2018.00767
Li, L., Acioglu, C., Heary, R. F., & Elkabes, S. (2021). Role of astroglial toll-like receptors (tlrs) in central nervous system infections, injury and neurodegenerative diseases. Brain, Behavior, and Immunity, 91(1), 740–755. https://doi.org/10.1016/j.bbi.2020.10.007
Li, Y., Li, L., Wu, J., Zhu, Z., Feng, X., Qin, L., Zhu, Y., Sun, L., Liu, Y., Qiu, Z., Duan, S., & Yu, Y.-Q. (2020). Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. ELife, 9(1). https://doi.org/10.7554/elife.57155
Lisieski, M. J., Eagle, A. L., Conti, A. C., Liberzon, I., & Perrine, S. A. (2018). Single-Prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Frontiers in Psychiatry, 9(1). https://doi.org/10.3389/fpsyt.2018.00196
Modrak, C. G., & Knackstedt, L. A. (2023). Footshock - an overview | ScienceDirect Topics. Www.sciencedirect.com. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/footshock#:~:text=First%20gaining%20recognition%20in%201908
Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 1161–1169. https://doi.org/10.1038/nn.2647
Nishimura, K. J., Poulos, A. M., Drew, M. R., & Rajbhandari, A. K. (2022). Know thy SEFL: Fear sensitization and its relevance to stressor-related disorders. Neuroscience & Biobehavioral Reviews, 142(1), 104884. https://doi.org/10.1016/j.neubiorev.2022.104884
Pal, M. M. (2021). Glutamate: The master neurotransmitter and its implications in chronic stress and mood disorders. Frontiers in Human Neuroscience, 15(1). https://doi.org/10.3389/fnhum.2021.722323
Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., Anthony-Samuel LaMantia, McNamara, J. O., & S Mark Williams. (2001). Neuroglial cells. Nih.gov; Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK10869/
Raber, J., Arzy, S., Bertolus, J. B., Depue, B., Haas, H. E., Hofmann, S. G., Kangas, M., Kensinger, E., Lowry, C. A., Marusak, H. A., Minnier, J., Mouly, A.-M., Mühlberger, A., Norrholm, S. D., Peltonen, K., Pinna, G., Rabinak, C., Shiban, Y., Soreq, H., & van der Kooij, M. A. (2019). Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neuroscience & Biobehavioral Reviews, 105, 136–177. https://doi.org/10.1016/j.neubiorev.2019.03.015
Richter-Levin, G., Stork, O., & Schmidt, M. V. (2019). Animal models of PTSD: A challenge to be met. Molecular Psychiatry, 24(8), 1135–1156. https://doi.org/10.1038/s41380-018-0272-5
Sheldon, A. L., & Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51(6-7), 333–355. https://doi.org/10.1016/j.neuint.2007.03.012
Souza, R. R., Noble, L. J., & McIntyre, C. K. (2017). Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD. Frontiers in Pharmacology, 8(1). https://doi.org/10.3389/fphar.2017.00615
Tannenbaum, M. B., Hepler, J., Zimmerman, R. S., Saul, L., Jacobs, S., Wilson, K., & Albarracín, D. (2015). Appealing to fear: A meta-analysis of fear appeal effectiveness and theories. Psychological Bulletin, 141(6), 1178–1204. https://doi.org/10.1037/a0039729
Wang, X., Takano, T., & Nedergaard, M. (2009). Astrocytic calcium signaling: Mechanism and implications for functional brain imaging. Methods in Molecular Biology (Clifton, N.J.), 489(1), 93–109. https://doi.org/10.1007/978-1-59745-543-5_5
Watanabe, S., Alzahra Al Omran, Shao, A. S., Xue, C., Zhang, Z., Zhang, J., Davies, D. L., Shao, X. M., Watanabe, J., & Liang, J. (2022). Dihydromyricetin improves social isolation-induced cognitive impairments and astrocytic changes in mice. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-09814-5
Wei, D. C., & Morrison, E. H. (2023, May 1). Histology, astrocytes. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK545142/#:~:text=Astrocytes%20are%20a%20subtype%20of
What is glutamate? (n.d.). Mental Health America. https://mhanational.org/what-glutamate
World Health Organization. (2022, June 8). Mental disorders. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/mental-disorders
Zhang, L., Wang, Q., Xian, X., Qi, J., Liu, L., & Li, W. (2018). Astrocytes enhance the tolerance of rat cortical neurons to glutamate excitotoxicity. Molecular Medicine Reports, 1(1). https://doi.org/10.3892/mmr.2018.9799
Additional Files
Posted
Categories
License
Copyright (c) 2024 Anugraha Pillai
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.