Preprint / Version 1

Analysis of the KRAS gene

Implications for cancer and targeted therapies.

##article.authors##

  • Maider Uriarte Polygence

DOI:

https://doi.org/10.58445/rars.1615

Keywords:

cancer, genes, gene therapy

Abstract

The KRAS gene has been identified as a crucial player in cancer development and progression, which has catalyzed a research project focused on unraveling its complex interactions and therapeutic potential. In my research, I will explore several facets of the KRAS gene and its relevance in cancer, without performing direct experiments. First, I will analyze in detail the mutations of the KRAS gene. This will include the identification and classification of the different variant mutations present in different types of cancer, as well as their frequency and distribution in the population. In addition, I will examine how these mutations affect normal cellular functions, which may provide crucial information on the mechanisms underlying KRAS-induced carcinogenesis. Second, I will investigate the molecular mechanisms of KRAS oncogenicity. This involves understanding the intracellular signaling pathways activated by KRAS mutations and how these contribute to cancer development and progression. I will also explore the interaction networks between mutant KRAS and other cellular proteins, as well as the regulation of gene expression induced by KRAS mutations, which may shed light on new potential therapeutic targets. Finally, I will discuss the therapeutic implications of KRAS mutations. This will include evaluating the efficacy of KRAS inhibitors in development for the treatment of different cancers with mutations in this gene. In summary, my research will address fundamental aspects of the KRAS gene in cancer, from the characterization of its mutations to therapeutic implications, without performing direct experiments, but through a thorough review and analysis of the available scientific literature.

References

Aguirre, A. J., Bardeesy, N., Sinha, M., et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev., 17(24), 3112-3126. doi:10.1101/gad.1158703.

Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N., & Perucho, M. (1988). Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell, 53(4), 549-554. doi:10.1016/0092-8674(88)90571-5.

Barbie, D. A., Tamayo, P., Boehm, J. S., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(7269), 108-112.

Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 8(8), 592-603. doi:10.1038/nrc2442.

Bissell, M. J., & Hines, W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med., 17(3), 320-329.

Biankin, A. V., Waddell, N., Kassahn, K. S., et al. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491(7424), 399-405. doi:10.1038/nature11547.

Bos, J. L. (1989). Ras oncogenes in human cancer: a review. Cancer Res., 49(17), 4682-4689.

Cancer Genome Atlas Research Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330-337. doi:10.1038/nature11252.

Canon, J., Rex, K., Saiki, A. Y., et al. (2019). The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781), 217-223. doi:10.1038/s41586-019-1694-1.

Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573), 1655-1657.

Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249-257.

Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559-1564.

Chandel, N. S., & DeBerardinis, R. J. (2016). Fundamentals of cancer metabolism. Science Advances, 2(5), e1600200.

Collisson, E. A., et al. (2012). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine.

Cox, A. D., & Der, C. J. (2010). Ras history: The saga continues. Small GTPases, 1(1), 2-27.

Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J., & Der, C. J. (2014). Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 13(11), 828-851.

De Roock, W., et al. (2010). KRAS mutant-specific therapies in colorectal cancer. Cancer Treat. Rev., 36(Suppl 1), S17-S20. doi:10.1016/S0305-7372(10)70004-0.

Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 3(1), 11-22.

Engelman, J. A., & Cantley, L. C. (2006). The role of the PI3K pathway in cancer development and therapy. Oncogene, 25(51), 6416-6422.

Engelman, J. A., Chen, L., Tan, X., et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med., 14(12), 1351-1356.

Eser, S., Schnieke, A., Schneider, G., & Saur, D. (2014). Oncogenic KRAS signalling in pancreatic cancer. Br. J. Cancer, 111(5), 817-822.

Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759-767.

Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438(7070), 967-974.

Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., ... & Campbell, P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res., 45(D1), D777-D783.

Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Semin. Oncol., 29(6 Suppl 16), 15-18.

Golan, T., Hammel, P., Reni, M., et al. (2019). Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med., 381(4), 317-327.

Guerra, C., & Barbacid, M. (2013). Genetically engineered mouse models of pancreatic adenocarcinoma. Mol. Oncol., 7(2), 232-247.

Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309-322.

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013.

Hingorani, S. R., et al. (2005). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437-450.

Holohan, C., et al. (2013). Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 13(10), 714-726.

Kimmelman, A. C. (2015). Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res., 21(8), 1828-1834. doi:10.1158/1078-0432.CCR-14-2681.

Kuhn, R. M., Haussler, D., & Kent, W. J. (2013). The UCSC genome browser and associated tools. Brief. Bioinform., 14(2), 144-161.

Lanman, B. A., et al. (2020). Discovery of a covalent inhibitor of KRAS G12C (AMG 510) for the treatment of solid tumors. J. Med. Chem., 63(1), 52-65.

Long, G. V., et al. (2011). Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol., 13(11), 1087-1095.

Miller, M. S., & Miller, L. D. (2012). RAS mutations and oncogenesis: Not all RAS mutations are created equally. Front. Genet., 2, 100.

Neesse, A., Krug, S., Gress, T. M., Tuveson, D. A., & Halbrook, C. J. (2019). Stromal biology and therapy in pancreatic cancer: A changing paradigm. Gut, 68(5), 993-1006.

Poulikakos, P. I., et al. (2010). RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature, 464(7287), 427-430.

Ryan, M. B., et al. (2018). Targeting RAS-mutant cancers: Is ERK the key? Trends Cancer, 4(11), 724-736.

Shibata, D., et al. (1988). Genetic alterations in adenocarcinomas of the pancreas: K-ras activation and loss of the retinoblastoma tumor suppressor gene. Proc. Natl. Acad. Sci. USA, 85(18), 5952-5956.

Singh, A., & Settleman, J. (2009). EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 29(34), 4741-4751.

Downloads

Posted

2024-09-12