Preprint / Version 1

Climate Change Induced Habitat Contraction in Critically Endangered European Eel Habitat: A Species Distribution Model Analysis

##article.authors##

  • Cooper Schirmeier The Potomac School

DOI:

https://doi.org/10.58445/rars.1585

Keywords:

Critically Endangered, Climate Change, European Eel, Anguilla anguilla, species distribution model

Abstract

The European Eel, Anguilla anguilla, is critically endangered due to overexploitation, habitat loss, and climate change. This study aims to model the species’ habitat suitability under current and future climate scenarios to guide conservation efforts. Using a species distribution model (SDM) with occurrence records (n = 7,869) from the Global Biodiversity Information Facility and environmental variables from the WorldClim database (19 bioclimatic variables) alongside an extensive literature review, we effectively determine habitat suitability and the impact of climate change on the species. The SDM showed a high predictive performance with an AUC value of 0.981, and the modeling determined that significant predictors of suitability included various temperature and precipitation variables, highlighting the European Eel’s sensitivity to climatic conditions. Results further indicate a considerable reduction in suitable habitats under future climate scenarios, with notable contractions in current habitable areas. Future projections identify potential refuge areas with less climate impact, which is crucial for targeted conservation efforts. The findings underscore the urgency of implementing adaptive conservation strategies to mitigate climate change impacts on A. Anguilla. The study provides a scientific basis for habitat protection and policy development to ensure the species’ long-term survival. 



References

Arai, T., Kotake, A., & McCarthy, T. (2006). Habitat use by the european eel anguilla anguilla in irish waters. Estuarine, Coastal and Shelf Science, 67(4), 569-578. https://doi.org/10.1016/j.ecss.2006.01.001

Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W., 2012. Selecting pseudo‐absences for species distribution models: How, where and how many?. Methods in ecology and evolution, 3(2), 327-338.

Barcala, E., Romero, D., Bulto, C., Boza, C., Peñalver, J., María-Dolores, E., & Muñoz, P. (2022). An endangered species living in an endangered ecosystem: Population structure and growth of european eel anguilla anguilla in a mediterranean coastal lagoon. Regional Studies in Marine Science, 50, 102163. https://doi.org/10.1016/j.rsma.2022.102163

Bonhommeau, S., Chassot, E., Planque, B., Rivot, E., Knap, A. H., & Le Pape, O. (2023). Impact of climate on eel populations of the Northern Hemisphere. Marine Ecology Progress Series, 373(71-80). https://doi.org/10.3354/meps07696

Bracamonte, S. E., Baltazar-Soares, M., & Eizaguirre, C. (2015). Characterization of MHC class II genes in the critically endangered european eel (Anguilla anguilla). Conservation Genetics Resources, 7(4), 859-870. https://doi.org/10.1007/s12686-015-0501-z

Cardas, J. B., Deconinck, D., Marquez, I., Torre, P. P., Garcia-Vazquez, E., & Machado-Schiaffino, G. (2020). New eDNA based tool applied to the specific detection and monitoring of the endangered European eel. Biological Conservation, 250. https://doi.org/10.1016/j.biocon.2020.108750

Dekker, W. (2003). Did lack of spawners cause the collapse of the european eel, Anguilla anguilla. Fisheries Management and Ecology, 10(6), 365-376. https://doi.org/10.1111/j.1365-2400.2003.00352.x

Eel. (n.d.). European Commission. Retrieved July 29, 2024, from https://oceans-and-fisheries.ec.europa.eu/ocean/marine-biodiversity/eel_en

Feunteun, E. (2002). Management and restoration of european eel population (Anguilla anguilla): An impossible bargain. Ecological Engineering, 18(5), 575-591. https://doi.org/10.1016/s0925-8574(02)00021-6

Fick, S.E. and R.J. Hijmans, 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology.

Fielding, A.H. and J.F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49

GBIF.org, July 9, 2024, GBIF Occurrence Download https://www.gbif.org/occurrence/search?taxon_key=5212973

Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J. S., Brüggemann, N., ... & Stössel, A. (2019). Max planck institute earth system model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geoscientific Model Development, 12(7), 3241-3281.

Hijmans, R.J., 2024. raster: Geographic Data Analysis and Modeling. R package version 3.6-27. https://rspatial.org/raster

Liu, C., M. White & G. Newell, 2011. Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34: 232-243.

Pike, C., Crook, V., Gollock, M., Beaulaton, L., Belpaire, C., Dekker, W., Diaz, E., Durif, C. M.F., & Hanel, R. (2020). Anguilla anguilla. The IUNC Red List of Threatened Species 2020. Retrieved July 1, 2024, from https://hal.science/hal-04461073/document

R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

Vaughan, L., Brophy, D., O'Toole, C., Graham, C., Ó Maoiléidigh, N., & Poole, R. (2021). Growth rates in a european eel Anguilla anguilla (L., 1758) population show a complex relationship with temperature over a seven-decade otolith biochronology. ICES Journal of Marine Science, 78(3), 994-1009. https://doi.org/10.1093/icesjms/fsaa253

Downloads

Posted

2024-09-07