Superconductivity
Properties and Applications
DOI:
https://doi.org/10.58445/rars.1584Keywords:
superconductivity, Bardeen-Cooper-Schrieffer theory, Meissner stateAbstract
Superconductivity is a phenomenon in low-temperature materials which exhibit zero electric resistance and repel magnetic fields. The two types of superconductors are Type I and Type II. Type I superconductors need much lower temperatures, are generally pure metals, and only exist in the Meissner state. Type II superconductors have much higher critical temperatures and critical magnetic fields, and can exist in the pure Meissner state or the mixed state. The BCS (Bardeen-Cooper-Schrieffer) theory explains why Type I superconductors are formed; however, Type II superconductors can be formed several different ways. Superconductors have various applications, but they are mostly used for strong magnets. These strong magnets are useful for MRIs, MagLev trains, and more. Another main application of superconductors is quantum computers, which utilize Josephson junctions to measure small changes in magnetic flux.
References
van Delft, D., & Kes, P. (2010). The discovery of superconductivity. Physics Today, 63(9), 38-43. https://doi.org/10.1063/1.3490499
Gavrolgu, K. (2009). Superconductivity. Compendium of Quantum Physics, 750–757. https://doi.org/10.1007/978-3-540-70626-7_215
Bednorz, J.G., & Müller, K.A. (1986). Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter, 64, 189–193. https://doi.org/10.1007/BF01303701.
Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q, & Chu, C.W. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 58(9), 908-910. https://doi.org/10.1103/PhysRevLett.58.908
Molodyk, A., & Larbalestier, D. (2023). The prospects of high-temperature superconductors. Science, 380(6651), 1220-1222. 10.1126/science.abq4137
Patel, Anup. (2013). Pulsed Field Magnetization of Composite Superconducting Bulks for Magnetic Bearing Applications. 10.13140/RG.2.1.2433.6883.
Diebner, A. (2021, September 7). Meissner Effect. Engineering LibreTexts. Retrieved July 23, 2024, from https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Magnetic_Properties/Meissner_Effect
Nave, R. (n.d.). Characteristic Lengths in Superconductors. HyperPhysics Concepts. Retrieved July 23, 2024, from http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/chrlen.html
Nave, R. (n.d.). Meissner effect for superconductors. HyperPhysics Concepts. Retrieved July 23, 2024, from http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/meis.html
Haleeda, Nur & Awang Kechik, M. & Abd-Shukor, R.. (2016). Effect of Yb2O3 Nanoparticle Addition on Superconducting Properties of BSCCO (2223)/Ag Tapes by Acetate Precipitation Method. Pertanika Journal of Science and Technology,2(1), 1-9.
Patterson, J.D., Bailey, B.C. (2018). The Interaction of Electrons and Lattice Vibrations. Solid-State Physics. 239–299. https://doi.org/10.1007/978-3-319-75322-5_4
9: Superconductivity. (2022, September 12). Physics LibreTexts. Retrieved July 23, 2024, from https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/09%3A_Condensed_Matter_Physics/9.09%3A_Superconductivity
Bardeen, J., Cooper, L.N., & Schrieffer, J.R. (1957). Microscopic Theory of Superconductivity. American Physical Society, 106(1), 162-164. 10.1103/PhysRev.106.162
Kadin, A. (2007). Spatial Structure of the Cooper Pair. Journal of Superconductivity and Novel Magnetism, 20, 285–292. https://doi.org/10.1007/s10948-006-0198-z
Kennard, A. (2003). Superconductors. University of Alaska Fairbanks. http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Aaron_Kennard/Basic%20Conditions.html
Yakhmi, J. V. (2021). Introduction to superconductivity, superconducting materials and their usefulness. Superconducting Materials and Their Applications, 1-24. 216.186.0.2
10: Electron Spin and the Pauli Principle. (2014, July 1). Chemistry LibreTexts. Retrieved July 23, 2024, from https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_(Zumdahl_and_Decoste)/07%3A_Atomic_Structure_and_Periodicity/12.10%3A_Electron_Spin_and_the_Pauli_Principle
Helmenstine, A. (2024, February 11). Superconductors and Superconductivity. Science Notes. Retrieved July 23, 2024, from https://sciencenotes.org/superconductors-and-superconductivity/
Shang, T., Ghosh, S.K., Smidman, M. et al (2022). Spin-triplet superconductivity in Weyl nodal-line semimetals. npj Quantum Mater. 7(35). https://doi.org/10.1038/s41535-022-00442-w
Tokunaga, Y. (2021). 3-3 Clarifying the Mechanism behind Superconductivity in Uranium Compounds. JAEA R&D Review. Retrieved July 23, 2024, from https://rdreview.jaea.go.jp/review_en/2020/e2020_3_3.html
Liu, Y., Wang, Y., Cai, Y., Hao, Z., Ma, X.M., Wang, L., Liu, C., Chen, J., Zhou, L., Wang, J., Wang, S., He, H., Liu, Y., Cui, S., Huang, B., Wang, J., Chen, C., & Mei, J.W. (2023). Doping evolution of superconductivity, charge order, and band topology in hole-doped topological kagome superconductors Cs(V1−𝑥Ti𝑥)3Sb5. PHYSICAL REVIEW MATERIALS, 7(6). 10.1103/PhysRevMaterials.7.064801
Grissonnanche, G., Cyr-Choinière, O., Laliberté, F. et al (2014). Direct measurement of the upper critical field in cuprate superconductors. Nat Commun, 5, 3280. https://doi.org/10.1038/ncomms4280
Saipuddin, S.F., Hashim, A., Suhaimi, N.E. (2022). Type I and Type II Superconductivity. Superconducting Materials,123–146. https://doi.org/10.1007/978-981-19-1211-5_5
Maniscalco, J.T., Gonnella, D., Hall, D.L., Liepe, M., & Smith, E (2015). Hc2 Measurements of Superconductors. Fundamental SRF R&D, 79-81. 978-3-95450-178-6
Gao, X., & Huang, Z.-P. (2019). Surface/Interfacial Energy Theory of Solids. Encyclopedia of Continuum Mechanics, 1-13. https://doi.org/10.1007/978-3-662-53605-6_167-1
W. Henkels and C. Kircher (1977), Penetration depth measurements on type II superconducting films. IEEE Transactions on Magnetics 13(1),63-66, doi: 10.1109/TMAG.1977.1059426
Nave, R. (n.d.). Critical magnetic fields for superconductors. HyperPhysics Concepts. Retrieved July 23, 2024, from http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scbc.html
Lecture 17: Type II Superconductors. (2003, October 30). Massachusetts Institute of Technology. Retrieved July 23, 2024, from https://web.mit.edu/6.763/www/FT03/Lectures/Lecture17.pdf
Raju, P Missak. (2013). Infiltration Growth processing of YBCO nano-composites: shape forming, microstructural and magnetic studies. 10.13140/RG.2.1.1716.8888.
Dumé, I. (2005, August 11). The ups and downs of doping – Physics World. Physics World. Retrieved July 23, 2024, from https://physicsworld.com/a/the-ups-and-downs-of-doping/
Yao, C., & Ma, Y. (2021). Superconducting materials: Challenges and opportunities for large-scale applications. iScience, 24(6). https://doi.org/10.1016/j.isci.2021.102541
Parizh M, Lvovsky Y, Sumption M. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges (2017). Supercond Sci Technol, 30(1). doi: 10.1088/0953-2048/30/1/014007.
MRI Machine Diagram. (2023). Resize and Save Images | Online. Retrieved July 23, 2024, from http://artpictures.club/autumn-2023.html
Science Museum. (2019, November 14). How does an MRI machine work? YouTube. Retrieved July 23, 2024, from https://www.youtube.com/watch?v=nFkBhUYynUw
How Maglev Works. (2016, June 14). Department of Energy. Retrieved July 23, 2024, from https://www.energy.gov/articles/how-maglev-works
- Magnetic levitation and its application for low frequency vibration energy harvesting. Structural Health Monitoring (SHM) in Aerospace Structures, 213-251. https://doi.org/10.1016/B978-0-08-100148-6.00008-1
Siemann, R.H. (1992). Uses of Superconductivity in Particle Accelerators. 21-46. https://www.slac.stanford.edu/pubs/slacreports/reports11/ssi91-002.pdf
Josephson, B.D. (1962). Possible new effects in superconductive tunnelling. Physics Letters, 1(7), 251-253. https://doi.org/10.1016/0031-9163(62)91369-0
Blomgren, J., & Magnelind, P. (2005). The Josephson Effect. Chalmers University. Retrieved July 23, 2024, from https://fy.chalmers.se/~delsing/LowTemp/Labbar/SQUIDlab-rev3.pdf
The Significance of the SQUID Equation. (n.d.). SQUID. https://www.electricity-magnetism.org/squid-2/
Nave, R. (n.d.). SQUID Magnetometer and Josephson Junctions. HyperPhysics Concepts. Retrieved July 23, 2024, from http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Squid.html
Clarke, J., Wilhelm, F (2008). Superconducting quantum bits. Nature, 453, 1031–1042. https://doi.org/10.1038/nature07128
Quantum vs Classical Computing: Key Differences. (2024, March 4). Quantum Explainer. https://quantumexplainer.com/quantum-vs-classical-computing-key-differences/
Huang, H.L., Wu, D., Fan, D., & Zhu, X. (2020). Superconducting Quantum Computing: A Review.
Chu, J. (2023, June 22). Physicists discover a new switch for superconductivity | MIT News | Massachusetts Institute of Technology. MIT News. Retrieved July 23, 2024, from https://news.mit.edu/2023/physicists-discover-new-switch-superconductivity-0622
Garisto, D. (2024, March 8). Superconductivity scandal: the inside story of deception in a rising star’s physics lab. Nature. https://www.nature.com/articles/d41586-024-00716-2
Moshchalkov, V., Menghini, M., Nishio, T., Chen, Q. H., Silhanek, A.V., Dao, V.H., Chibotaru, L.F., Zhigadlo, N.D., & Karpinski, J. (2009). Type-1.5 Superconductivity. PHYSICAL REVIEW LETTERS, 117001-1-117001-4. 10.1103/PhysRevLett.102.117001
Persky, E., Bjørlig, A.V., Feldman, I. et al. (2022). Magnetic memory and spontaneous vortices in a van der Waals superconductor. Nature, 607, 692–696. https://doi.org/10.1038/s41586-022-04855-2
Downloads
Posted
Categories
License
Copyright (c) 2024 Silvia Ellis
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.