Preprint / Version 2

An Examination of Habitability in Exoplanet Systems

##article.authors##

  • Divya Kumari Hillsborough High School

DOI:

https://doi.org/10.58445/rars.14

Keywords:

Astronomy, Planetary Systems, Exoplanets, Habitability, Kepler-62, TRAPPIST-1

Abstract

By reviewing what is known and describing future research directions, this paper explores the qualities that make a planet habitable and the environment they may create. We consider two planetary systems — TRAPPIST-1 and Kepler-62 — and develop a metric to rank the likelihood of habitability on their respective planets. Our guideline for habitability includes the capability of sustaining liquid water, reasonable environmental conditions, and presence of molecules known to sustain life. Previous research has determined specific values and rankings within each system for planet density, obliquity, effective temperature (Teff) of the planet, equilibrium temperature (Teq) of the planet, and semimajor axes (among others) that increase the likelihood of habitability. After compiling these system properties from the literature, we rank the planets in each system based on their expected likelihood of habitability. The two systems are compared to demonstrate how differing environments might affect habitability. The rankings, system comparisons, and other information lead us to conclude that Kepler-62 f and TRAPPIST-1 e are likely the most habitable planet from each system. We compare these planets to each other and individually to Earth. We conclude by placing these findings into the broader context of exoplanet discovery and discussing future constraints on planetary habitability.

References

(1) NASA. (2015, December 17). Exoplanet exploration: Planets beyond our solar system. NASA. Retrieved June 19, 2022, from https://exoplanets.nasa.gov/

(2) NASA. (2022, April 13). Overview. NASA. Retrieved June 19, 2022, from https://exoplanets.nasa.gov/what-is-an-exoplanet/planet-types/overview/

(3) NASA. (2019, June 20). 5 ways to find a planet. NASA. Retrieved June 19, 2022, from https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/

(4) NASA. (2022, April 13). The big questions. NASA. Retrieved June 19, 2022, from https://exoplanets.nasa.gov/search-for-life/big-questions/

(5) California Institute of Technology . (n.d.). TRAPPIST-1 Overview - California Institute of Technology. NASA Exoplanet Archive. Retrieved June 18, 2022, from https://exoplanetarchive.ipac.caltech.edu/overview/TRAPPIST-1

(6) Papaloizou, J. C., Szuszkiewicz, E., & Terquem, C. (2017). The TRAPPIST-1 system: Orbital Evolution, tidal dissipation, formation and habitability. Monthly Notices of the Royal Astronomical Society, 476(4), 5032–5056. https://doi.org/10.1093/mnras/stx2980

(7) Gillon, M., Triaud, A. H., Demory, B.-O., Jehin, E., Agol, E., Deck, K. M., Lederer, S. M., de Wit, J., Burdanov, A., Ingalls, J. G., Bolmont, E., Leconte, J., Raymond, S. N., Selsis, F., Turbet, M., Barkaoui, K., Burgasser, A., Burleigh, M. R., Carey, S. J., ... Queloz, D. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542(7642), 456–460. https://doi.org/10.1038/nature21460

(8) California Institute of Technology . (n.d.). Kepler-62 Overview - Nasa Exoplanet Archive. NASA Exoplanet Archive. Retrieved June 18, 2022, from https://exoplanetarchive.ipac.caltech.edu/overview/Kepler-62

(9) Kane, S. R., Hill, M. L., Kasting, J. F., Kopparapu, R. K., Quintana, E. V., Barclay, T., Batalha, N. M., Borucki, W. J., Ciardi, D. R., Haghighipour, N., Hinkel, N. R., Kaltenegger, L., Selsis, F., & Torres, G. (2016). A catalog of Kepler habitable zone exoplanet candidates. The Astrophysical Journal, 830(1), 1. https://doi.org/10.3847/0004-637x/830/1/1

(10) Deitrick, R., Barnes, R., Quinn, T. R., Armstrong, J., Charnay, B., & Wilhelm, C. (2018). Exo-Milankovitch cycles. I. Orbits and rotation states. The Astronomical Journal, 155(2), 60. https://doi.org/10.3847/1538-3881/aaa301

(11) Bolmont, E., Raymond, S. N., Leconte, J., Correia, A., & Quintana, E. (2015). Tidal evolution in multiple planet systems: Application to kepler-62 and kepler-186. Proceedings of the International Astronomical Union, 9(S310), 58–61. https://doi.org/10.1017/s1743921415007832

(12) Bolmont, E., Raymond, S. N., Leconte, J., Hersant, F., & Correia, A. C. (2015). mercury-t: A new code to study tidally evolving multi-planet systems. applications to kepler-62. Astronomy & Astrophysics, 583. https://doi.org/10.1051/0004-6361/201525909

(13) Papaloizou, J. C., Szuszkiewicz, E., & Terquem, C. (2017). The TRAPPIST-1 system: Orbital Evolution, tidal dissipation, formation and habitability. Monthly Notices of the Royal Astronomical Society, 476(4), 5032–5056. https://doi.org/10.1093/mnras/stx2980

(14) Dong, C., Jin, M., Lingam, M., Airapetian, V. S., Ma, Y., & van der Holst, B. (2017). Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proceedings of the National Academy of Sciences, 115(2), 260–265. https://doi.org/10.1073/pnas.1708010115

(15) Wheatley, P. J., Louden, T., Bourrier, V., Ehrenreich, D., & Gillon, M. (2016). Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1. Monthly Notices of the Royal Astronomical Society: Letters, 465(1). https://doi.org/10.1093/mnrasl/slw192

(16) de Wit, J., Wakeford, H. R., Gillon, M., Lewis, N. K., Valenti, J. A., Demory, B.-O., Burgasser, A. J., Burdanov, A., Delrez, L., Jehin, E., Lederer, S. M., Queloz, D., Triaud, A. H., & Van Grootel, V. (2016). A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and C. Nature, 537(7618), 69–72. https://doi.org/10.1038/nature18641

(17) Borucki, W. J., Agol, E., Fressin, F., Kaltenegger, L., Rowe, J., Isaacson, H., Fischer, D., Batalha, N., Lissauer, J. J., Marcy, G. W., Fabrycky, D., Désert, J.-M., Bryson, S. T., Barclay, T., Bastien, F., Boss, A., Brugamyer, E., Buchhave, L. A., Burke, C., ... Winn, J. N. (2014). Kepler-62: A five-planet system with planets of 1.4 and 1.6 earth radii in the habitable zone. Science, 340(6142), 587–590. https://doi.org/10.1126/science.1234702

(18) NASA. (2022, February 15). Exoplanet discovery: Seven Earth-sized planets around a single star. NASA. Retrieved August 28, 2022, from https://exoplanets.nasa.gov/trappist1/

(19) NASA. (2022, February 15). Kepler-62 and the solar system - exoplanet exploration: Planets beyond our solar system. NASA. Retrieved August 28, 2022, from https://exoplanets.nasa.gov/resources/124/kepler-62-and-the-solar-system/

(20) Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., Harman, C. E., DasSarma, S., Fisher, T. M., Arney, G. N., Hartnett, H. E., Reinhard, C. T., Olson, S. L., Meadows, V. S., Cockell, C. S., Walker, S. I., Grenfell, J. L., Hegde, S., Rugheimer, S., Hu, R., & Lyons, T. W. (2018). Exoplanet biosignatures: A review of remotely detectable signs of life. Astrobiology, 18(6), 663–708. https://doi.org/10.1089/ast.2017.1729

Downloads

Posted

2022-10-07 — Updated on 2022-12-22

Versions

Categories