Treatment Methods for Short-Chain PFAS
A Critical Review
DOI:
https://doi.org/10.58445/rars.1346Keywords:
poly- fluoroalkyl, PFAS (C=4-7), PFASAbstract
With global industries switching from long-chain per- and poly- fluoroalkyl substances (PFAS) to short-chain PFAS (C=4-7), short-chain PFAS are becoming a growing health concern. Short-chain PFAS have been detected in water throughout the world at concentrations exceedingly above regulatory standards, yet the majority of studies focus on the removal of long-chain PFAS. The main objective of this review is to provide a critical analysis on novel techniques for short-chain PFAS removal from water. The study looks at adsorption and membrane separation as the two primary treatment methods as well as the effects of external factors such as organic matter, pH, and ionic concentration. Overall, membranes such as nanofiltration and reverse osmosis that incorporated an adsorbent component performed the best when removing short-chain PFAS. However, further research needs to be completed on many removal techniques when it comes to testing real feedwater with additional contamination, such as the presence of organic matter.
References
M’s $10 Billion PFAS Deal Approved by Court as Rule Looms (2) [WWW Document], n.d. URL https://news.bloomberglaw.com/environment-and-energy/3ms-10-billion-pfas-deal-approved-by-court-as-rule-looms (accessed 4.17.24).
Physical and Chemical Properties – PFAS — Per- and Polyfluoroalkyl Substances [WWW Document], n.d. URL https://pfas-1.itrcweb.org/4-physical-and-chemical-properties/ (accessed 4.15.24).
Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry 33, 1921–1929. https://doi.org/10.1002/etc.2663
Alves, A.V., Tsianou, M., Alexandridis, P., 2020. Fluorinated Surfactant Adsorption on Mineral Surfaces: Implications for PFAS Fate and Transport in the Environment. Surfaces 3, 516–566. https://doi.org/10.3390/surfaces3040037
Appleman, T.D., Higgins, C.P., Quiñones, O., Vanderford, B.J., Kolstad, C., Zeigler-Holady, J.C., Dickenson, E.R.V., 2014. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Research 51, 246–255. https://doi.org/10.1016/j.watres.2013.10.067
Ateia, M., Arifuzzaman, M., Pellizzeri, S., Attia, M.F., Tharayil, N., Anker, J.N., Karanfil, T., 2019. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Research 163, 114874. https://doi.org/10.1016/j.watres.2019.114874
Azad, A.K., Rasul, M.G., Khan, M.M.K., Sharma, S.C., Islam, R., 2015. Prospect of Moringa Seed Oil as a Sustainable Biodiesel Fuel in Australia: A Review. Procedia Engineering 105, 601–606. https://doi.org/10.1016/j.proeng.2015.05.037
Bai, X., Son, Y., 2021. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Science of The Total Environment 751, 141622. https://doi.org/10.1016/j.scitotenv.2020.141622
Banks, D., Jun, B.-M., Heo, J., Her, N., Park, C.M., Yoon, Y., 2020. Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: A review. Separation and Purification Technology 231, 115929. https://doi.org/10.1016/j.seppur.2019.115929
Bentel, M.J., Yu, Y., Xu, L., Li, Z., Wong, B.M., Men, Y., Liu, J., 2019. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environ. Sci. Technol. 53, 3718–3728. https://doi.org/10.1021/acs.est.8b06648
Blum, A., Balan, S.A., Scheringer, M., Trier, X., Goldenman, G., Cousins, I.T., Diamond, M., Fletcher, T., Higgins, C., Lindeman, A.E., Peaslee, G., de Voogt, P., Wang, Z., Weber, R., 2015. The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs). Environmental Health Perspectives 123, A107–A111. https://doi.org/10.1289/ehp.1509934
Brusseau, M.L., 2018. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Science of The Total Environment 613–614, 176–185. https://doi.org/10.1016/j.scitotenv.2017.09.065
Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A., van Leeuwen, S.P., 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management 7, 513–541. https://doi.org/10.1002/ieam.258
Campbell, T.Y., Vecitis, C.D., Mader, B.T., Hoffmann, M.R., 2009. Perfluorinated Surfactant Chain-Length Effects on Sonochemical Kinetics. J. Phys. Chem. A 113, 9834–9842. https://doi.org/10.1021/jp903003w
Chen, X., Vanangamudi, A., Wang, J., Jegatheesan, J., Mishra, V., Sharma, R., Gray, S.R., Kujawa, J., Kujawski, W., Wicaksana, F., Dumée, L.F., 2020. Direct contact membrane distillation for effective concentration of perfluoroalkyl substances – Impact of surface fouling and material stability. Water Research 182, 116010. https://doi.org/10.1016/j.watres.2020.116010
Country information - OECD Portal on Per and Poly Fluorinated Chemicals [WWW Document], n.d. URL https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/countryinformation/european-union.htm (accessed 4.17.24).
Dalahmeh, S., Tirgani, S., Komakech, A.J., Niwagaba, C.B., Ahrens, L., 2018. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Science of The Total Environment 631–632, 660–667. https://doi.org/10.1016/j.scitotenv.2018.03.024
Daly, E.R., Chan, B.P., Talbot, E.A., Nassif, J., Bean, C., Cavallo, S.J., Metcalf, E., Simone, K., Woolf, A.D., 2018. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. International Journal of Hygiene and Environmental Health 221, 569–577. https://doi.org/10.1016/j.ijheh.2018.02.007
Das, S., Ronen, A., 2022. A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. Membranes 12, 662. https://doi.org/10.3390/membranes12070662
Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., Yu, G., 2014. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. Journal of Hazardous Materials 274, 443–454. https://doi.org/10.1016/j.jhazmat.2014.04.038
Fang, F., Chen, S., Shi, K., Xu, S., Yi, Z., Lei, L., Zhuang, L., Wan, H., Xu, Z., 2024. Hydrophilic membranes for effective removal of PFAS from water: Anti-fouling, durability, and reusability. Separation and Purification Technology 348, 127379. https://doi.org/10.1016/j.seppur.2024.127379
Fenton, S.E., Ducatman, A., Boobis, A., DeWitt, J.C., Lau, C., Ng, C., Smith, J.S., Roberts, S.M., 2021. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environmental Toxicology and Chemistry 40, 606–630. https://doi.org/10.1002/etc.4890
Flores, C., Ventura, F., Martin-Alonso, J., Caixach, J., 2013. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Science of The Total Environment 461–462, 618–626. https://doi.org/10.1016/j.scitotenv.2013.05.026
Gagliano, E., Sgroi, M., Falciglia, P.P., Vagliasindi, F.G.A., Roccaro, P., 2020. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Research 171, 115381. https://doi.org/10.1016/j.watres.2019.115381
Gebbink, W.A., van Asseldonk, L., van Leeuwen, S.P.J., 2017. Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands. Environ. Sci. Technol. 51, 11057–11065. https://doi.org/10.1021/acs.est.7b02488
Glüge, J., Scheringer, M., Cousins, I.T., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Trier, X., Wang, Z., 2020. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci.: Processes Impacts 22, 2345–2373. https://doi.org/10.1039/D0EM00291G
Gujjala, L.K.S., Won, W., 2022. Process development, techno-economic analysis and life-cycle assessment for laccase catalyzed synthesis of lignin hydrogel. Bioresource Technology 364, 128028. https://doi.org/10.1016/j.biortech.2022.128028
Gutierrez, A.M., Frazar, E.M., Klaus, M.V.X., Paul, P., Hilt, J.Z., 2022. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare Through Human and Environmental Treatment. Adv Healthc Mater 11, e2101820. https://doi.org/10.1002/adhm.202101820
Heydebreck, F., Tang, J., Xie, Z., Ebinghaus, R., 2015. Alternative and Legacy Perfluoroalkyl Substances: Differences between European and Chinese River/Estuary Systems. Environ. Sci. Technol. 49, 8386–8395. https://doi.org/10.1021/acs.est.5b01648
Hill, P.J., Taylor, M., Goswami, P., Blackburn, R.S., 2017. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. Chemosphere 181, 500–507. https://doi.org/10.1016/j.chemosphere.2017.04.122
Huang, P.-J., Hwangbo, M., Chen, Z., Liu, Y., Kameoka, J., Chu, K.-H., 2018. Reusable Functionalized Hydrogel Sorbents for Removing Long- and Short-Chain Perfluoroalkyl Acids (PFAAs) and GenX from Aqueous Solution. ACS Omega 3, 17447–17455. https://doi.org/10.1021/acsomega.8b02279
Jeon, S., Lee, E., Min, T., Lee, Y., Lee, G., Kim, A., Yoon, H., 2024. Efficient removal of short-chain perfluoroalkyl substances (PFAS) using asymmetric membrane capacitive deionization. Separation and Purification Technology 348, 127728. https://doi.org/10.1016/j.seppur.2024.127728
Jin, T., Peydayesh, M., Joerss, H., Zhou, J., Bolisetty, S., Mezzenga, R., 2021. Amyloid fibril-based membranes for PFAS removal from water. Environmental Science: Water Research & Technology 7, 1873–1884. https://doi.org/10.1039/D1EW00373A
Jing, P., Rodgers, P.J., Amemiya, S., 2009. High Lipophilicity of Perfluoroalkyl Carboxylate and Sulfonate: Implications for Their Membrane Permeability. J. Am. Chem. Soc. 131, 2290–2296. https://doi.org/10.1021/ja807961s
Kempisty, D.M., Arevalo, E., Spinelli, A.M., Edeback, V., Dickenson, E.R.V., Husted, C., Higgins, C.P., Summers, R.S., Knappe, D.R.U., 2022. Granular activated carbon adsorption of perfluoroalkyl acids from ground and surface water. AWWA Water Science 4, e1269. https://doi.org/10.1002/aws2.1269
Kim, M., Li, L.Y., Grace, J.R., Yue, C., 2015. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors. Environmental Pollution 196, 462–472. https://doi.org/10.1016/j.envpol.2014.11.008
Kirsch, P., 2013. Modern fluoroorganic chemistry: synthesis, reactivity, applications. John Wiley & Sons.
Kucharzyk, K. (Kate), Darlington, R., Benotti, M., Deeb, R., Hawley, E., 2017. Novel treatment technologies for PFAS compounds: A critical review. Journal of Environmental Management 204. https://doi.org/10.1016/j.jenvman.2017.08.016
Kumarasamy, E., Manning, I.M., Collins, L.B., Coronell, O., Leibfarth, F.A., 2020. Ionic Fluorogels for Remediation of Per- and Polyfluorinated Alkyl Substances from Water. ACS Cent. Sci. 6, 487–492. https://doi.org/10.1021/acscentsci.9b01224
Ladapo, J.A., 2019. Review of GenX Pollution: GenX Pollution of the Cape Fear River in North Carolina, U.S.A. 15.
Le, V.T., Joo, S.-W., Berkani, M., Mashifana, T., Kamyab, H., Wang, C., Vasseghian, Y., 2023. Sustainable cellulose-based hydrogels for water treatment and purification. Industrial Crops and Products 205, 117525. https://doi.org/10.1016/j.indcrop.2023.117525
Lee, S., 2020. Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module. Membranes 10, 318. https://doi.org/10.3390/membranes10110318
Lee, T., Speth, T.F., Nadagouda, M.N., 2022. High-pressure membrane filtration processes for separation of Per- and polyfluoroalkyl substances (PFAS). Chemical Engineering Journal 431, 134023. https://doi.org/10.1016/j.cej.2021.134023
Léniz-Pizarro, F., Vogler, R.J., Sandman, P., Harris, N., Ormsbee, L.E., Liu, C., Bhattacharyya, D., 2022. Dual-Functional Nanofiltration and Adsorptive Membranes for PFAS and Organics Separation from Water. ACS ES T Water 2, 863–872. https://doi.org/10.1021/acsestwater.2c00043
Leung, S.C.E., Wanninayake, D., Chen, D., Nguyen, N.-T., Li, Q., 2023. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS) - Challenges and opportunities in sensing and remediation. Science of The Total Environment 905, 166764. https://doi.org/10.1016/j.scitotenv.2023.166764
Li, D., Lee, C.-S., Zhang, Y., Das, R., Akter, F., Venkatesan, A.K., Hsiao, B.S., 2023. Efficient removal of short-chain and long-chain PFAS by cationic nanocellulose. J. Mater. Chem. A 11, 9868–9883. https://doi.org/10.1039/D3TA01851B
Lin, N.H., Cohen, Y., 2011. QCM study of mineral surface crystallization on aromatic polyamide membrane surfaces. Journal of Membrane Science 379, 426–433. https://doi.org/10.1016/j.memsci.2011.06.018
Lindstrom, A.B., Strynar, M.J., Libelo, E.L., 2011. Polyfluorinated Compounds: Past, Present, and Future. Environ. Sci. Technol. 45, 7954–7961. https://doi.org/10.1021/es2011622
Ma, J., Wang, Y., Xu, H., Ding, M., Gao, L., 2022. MXene (Ti3T2CX)-reinforced thin-film polyamide nanofiltration membrane for short-chain perfluorinated compounds removal. Process Safety and Environmental Protection 168, 275–284. https://doi.org/10.1016/j.psep.2022.09.080
Militao, I.M., 2023. Developing alginate-based hydrogel adsorbents for PFAS removal from water systems.
Militao, I.M., Roddick, F., Fan, L., Zepeda, L.C., Parthasarathy, R., Bergamasco, R., 2023. PFAS removal from water by adsorption with alginate-encapsulated plant albumin and rice straw-derived biochar. Journal of Water Process Engineering 53, 103616. https://doi.org/10.1016/j.jwpe.2023.103616
Möller, A., Ahrens, L., Surm, R., Westerveld, J., van der Wielen, F., Ebinghaus, R., de Voogt, P., 2010. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environmental Pollution 158, 3243–3250. https://doi.org/10.1016/j.envpol.2010.07.019
Munoz, G., Liu, J., Vo Duy, S., Sauvé, S., 2019. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review. Trends in Environmental Analytical Chemistry 23, e00066. https://doi.org/10.1016/j.teac.2019.e00066
Murray, C.C., Vatankhah, H., McDonough, C.A., Nickerson, A., Hedtke, T.T., Cath, T.Y., Higgins, C.P., Bellona, C.L., 2019. Removal of per- and polyfluoroalkyl substances using super-fine powder activated carbon and ceramic membrane filtration. Journal of Hazardous Materials 366, 160–168. https://doi.org/10.1016/j.jhazmat.2018.11.050
Nakayama, S., Strynar, M.J., Helfant, L., Egeghy, P., Ye, X., Lindstrom, A.B., 2007. Perfluorinated Compounds in the Cape Fear Drainage Basin in North Carolina. Environ. Sci. Technol. 41, 5271–5276. https://doi.org/10.1021/es070792y
Naming Conventions for Per- and Polyfluoroalkyl Substances (PFAS), n.d.
Nguyen, T.-T., Min, X., Xia, W., Qiang, Z., Khandge, R.S., Yu, H.-K., Wang, J.-W., Wang, Y., Ma, X., 2024. Anionic covalent organic framework membranes for the removal of per- and polyfluoroalkyl substances with enhanced selectivity. Journal of Membrane Science 705, 122925. https://doi.org/10.1016/j.memsci.2024.122925
Pan, Y., Zhang, H., Cui, Q., Sheng, N., Yeung, L.W.Y., Sun, Y., Guo, Y., Dai, J., 2018. Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water. Environ. Sci. Technol. 52, 7621–7629. https://doi.org/10.1021/acs.est.8b00829
Pramanik, B.K., Pramanik, S.K., Sarker, D.C., Suja, F., 2017. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water. Environmental Technology 38, 1937–1942. https://doi.org/10.1080/09593330.2016.1240716
Qiu, T., Davies, P.A., 2012. Comparison of Configurations for High-Recovery Inland Desalination Systems. Water 4, 690–706. https://doi.org/10.3390/w4030690
Rahman, M.F., Peldszus, S., Anderson, W.B., 2014. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Research 50, 318–340. https://doi.org/10.1016/j.watres.2013.10.045
Rayne, S., Forest, K., 2009. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. Journal of Environmental Science and Health, Part A 44, 1145–1199. https://doi.org/10.1080/10934520903139811
Riegel, M., Egner, S., Sacher, F., Beuthe, B., Bonte, M., Hjort, M., 2020. Review of water treatment systems for PFAS removal.
Riegel, M., Haist-Gulde, B., Sacher, F., 2023. Sorptive removal of short-chain perfluoroalkyl substances (PFAS) during drinking water treatment using activated carbon and anion exchanger. Environ Sci Eur 35, 1–12. https://doi.org/10.1186/s12302-023-00716-5
Shahid, I., n.d. Nanocellulose-based systems for the removal of perfluoroalkyl compounds from water.
So, M.K., Miyake, Y., Yeung, W.Y., Ho, Y.M., Taniyasu, S., Rostkowski, P., Yamashita, N., Zhou, B.S., Shi, X.J., Wang, J.X., Giesy, J.P., Yu, H., Lam, P.K.S., 2007. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 68, 2085–2095. https://doi.org/10.1016/j.chemosphere.2007.02.008
Sun, M., Arevalo, E., Strynar, M., Lindstrom, A., Richardson, M., Kearns, B., Pickett, A., Smith, C., Knappe, D.R.U., 2016. Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina. Environ. Sci. Technol. Lett. 3, 415–419. https://doi.org/10.1021/acs.estlett.6b00398
Thompson, K.A., Ray, H., Gerrity, D., Quiñones, O., Dano, E., Prieur, J., Vanderford, B., Steinle-Darling, E., Dickenson, E.R.V., 2024. Sources of Per- and Polyfluoroalkyl Substances in an Arid, Urban, Wastewater-Dominated Watershed. https://doi.org/10.2139/ssrn.4717797
US EPA, O., 2016. PFAS Explained [WWW Document]. URL https://www.epa.gov/pfas/pfas-explained (accessed 3.25.24).
US EPA, O., 2015. Long-Chain Perfluoroalkyl Carboxylate (LCPFAC) Chemicals [WWW Document]. URL https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/long-chain-perfluoroalkyl-carboxylate-lcpfac-chemicals (accessed 4.17.24).
Verliefde, A.R.D., Heijman, S.G.J., Cornelissen, E.R., Amy, G., Van Der Bruggen, B., Van Dijk, J.C., 2007. Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Research 41, 3227–3240. https://doi.org/10.1016/j.watres.2007.05.022
Wang, X., Ham, S., Zhang, H., Wang, Y., Qiao, R., 2023. Adsorption of Model Polyfluoroalkyl Substances on Gold Electrodes for Electroanalytical Applications. ChemElectroChem 10. https://doi.org/10.1002/celc.202300298
Zhang, D., He, Q., Wang, M., Zhang, W., Liang, Y., 2021. Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar. Environmental Technology 42, 1798–1809. https://doi.org/10.1080/09593330.2019.1680744
Zhang, J., Huang, Z., Gao, L., Gray, S., Xie, Z., 2022. Study of MOF incorporated dual layer membrane with enhanced removal of ammonia and per-/poly-fluoroalkyl substances (PFAS) in landfill leachate treatment. Science of The Total Environment 806, 151207. https://doi.org/10.1016/j.scitotenv.2021.151207
Zhang, Q., Deng, S., Yu, G., Huang, J., 2011. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism. Bioresource Technology 102, 2265–2271. https://doi.org/10.1016/j.biortech.2010.10.040
Zhang, X., Lohmann, R., Dassuncao, C., Hu, X.C., Weber, A.K., Vecitis, C.D., Sunderland, E.M., 2016. Source Attribution of Poly- and Perfluoroalkyl Substances (PFASs) in Surface Waters from Rhode Island and the New York Metropolitan Area. Environ. Sci. Technol. Lett. 3, 316–321. https://doi.org/10.1021/acs.estlett.6b00255
Zhao, P., Xia, X., Dong, J., Xia, N., Jiang, X., Li, Y., Zhu, Y., 2016. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Science of The Total Environment 568, 57–65. https://doi.org/10.1016/j.scitotenv.2016.05.221
Zhao, Z., Cheng, X., Hua, X., Jiang, B., Tian, C., Tang, J., Li, Q., Sun, H., Lin, T., Liao, Y., Zhang, G., 2020. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. Environmental Pollution 263, 114391. https://doi.org/10.1016/j.envpol.2020.114391
Zhou, Z., Liang, Y., Shi, Y., Xu, L., Cai, Y., 2013. Occurrence and Transport of Perfluoroalkyl Acids (PFAAs), Including Short-Chain PFAAs in Tangxun Lake, China. Environ. Sci. Technol. 47, 9249–9257. https://doi.org/10.1021/es402120y
Downloads
Posted
Categories
License
Copyright (c) 2024 Sumedh Kothari
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.