
Passage of Time for an Astronaut Rotating around a Rotating (Kerr) Black Hole Using
Python- An Application of General Theory of Relativity

Aadit Sengupta

American School in London, London, England

aadits2056@gmail.com

Abstract: The General Theory of Relativity (GTR) is a cornerstone of modern physics,
revolutionizing our understanding of gravity, depicting it as a curvature of spacetime. Among its
solutions, the Kerr equation stands out, describing the spacetime around a rotating mass. This
paper delves into exact solutions like the Schwarzschild solution for non-rotating masses and
extends to the Kerr solution for rotating black holes. It specifically explores time dilation of an
astronaut in the Kerr metric, which is influenced by parameters such as radial distance, angular
momentum, and polar angle. The study employs Python for computational analysis, visualizing
time dilation through plots that reflect varying black hole rotations and observer positions,
offering a nuanced understanding of relativistic effects in extreme gravitational fields.
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1. Introduction

The General Theory of Relativity is a groundbreaking framework in physics conceived by Albert
Einstein and published in 1915[1], fundamentally redefining the concept of gravity as curvature
in spacetime[2]. It posited gravity as a manifestation of spacetime curvature, influenced by mass
and energy, rather than a traditional force[3]. The Einstein Field Equation, central to this theory,
is elegantly expressed as:

. . . (1)𝑅
µν

 −  1/2𝑅𝑔
µν

 =  𝑘𝑇
µν

 

where is the Ricci curvature tensor, R is the scalar curvature, and is the metric tensor𝑅
µν

𝑔
µν

and k is a constant, representing the fabric of spacetime. This equation's solutions have been
pivotal in our understanding of cosmological and astrophysical phenomena[4]. The first major
solution was the Schwarzschild solution of 1918[5], elucidating the spacetime structure
surrounding a spherical non-rotating mass, laying the groundwork for black hole physics. In
1972, the Kerr solution emerged[6], detailing the spacetime around rotating masses, and
significantly deepening our understanding of rotating black holes. The inherent complexity in
solving Einstein's equation arises from its nonlinear characteristics and the challenge of
satisfying relevant physical boundary conditions. The introduction of the Newman-Janis
Algorithm[7] later offered a transformative approach, converting specific static solutions into their
rotating counterparts, thereby demonstrating the profound and intricate relationship between
advanced mathematics and theoretical physics in exploring and explaining the complexities of
the universe.

The No-hair theorem[8] is a fundamental concept in black hole physics, posits that all black hole
solutions of the Einstein-Maxwell equations of gravitation and electromagnetism in general
relativity can be completely characterised by only three externally observable classical
parameters: mass, electric charge, and angular momentum. This theorem suggests that all
other information about the matter that formed a black hole or is falling into it, "disappears"
behind the black hole event horizon and is therefore permanently inaccessible to external
observers. This paradigm fundamentally challenges the notion of information preservation in the
context of astrophysics and quantum mechanics. Recent advancements in astrophysical
research have provided compelling evidence in support of the No-hair theorem. Observations
from gravitational wave detectors like LIGO and VIRGO[9], studying the mergers of binary black
hole systems, have been pivotal. These observations are consistent with the predictions of the
No-hair theorem, as the gravitational waves emitted during these events depend solely on the
masses and spins of the merging black holes, aligning with the theorem’s assertion that these
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are the only characteristics discernible to an external observer. These empirical findings not only
reinforce the No-hair theorem but also enrich our understanding of the fundamental nature of
black holes.

2.Methodology

This section discusses the methodology used to conduct the research.

2.1. Aim of the Study
To calculate the time dilation near a Rotating (Kerr) black hole.

2.2. Research Design
A thought experiment: An astronaut revolving around a Kerr Black hole. The time dilation is

calculated by keeping the astronaut at different distances and angular displacements from the

center of the Black Hole as well as different rotations of the Black Hole.

2.3. Hypothesis
Null hypothesis: There is no change in time flow near a Kerr black hole.

Alternate hypothesis: There is a change in time flow, that is, time dilation near a kerr black hole.

2.4. Tools Used
Google Collab[10], Python [11]

2.5. Data Collection Procedure

The time dilation factor is calculated for three different rotation spin values of black hole. For

each spin value, the position of the astronaut is taken to be from 1.01 to 1.1 of the black hole

radius and angular displacement from 0 to 90 degree.

3. Discussion
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The Schwarzschild solution is derived from Einstein's field equations by setting the
stress-energy to zero. When using the simplified equation to solve for a non-rotating black(𝑇

µν
)

hole, the Schwarzschild metric emerges, describing spacetime around a non-rotating, isolated
mass.

𝑑𝑠2 =  − (1 −  
𝑟

𝑠

𝑟 )𝑑𝑡2 +

(1 −  
𝑟

𝑠

𝑟 )−1𝑑𝑟2 +

𝑟2(𝑑θ2 + 𝑠𝑖𝑛2θ𝑑ϕ2)
. . . (2)

Line element for Schwarzschild Black Hole

This solution is essential, predicting the existence of black holes and defining the Schwarzschild
radius, thus becoming a cornerstone in the understanding of gravitational phenomena and black
hole astrophysics[4]. The passage of time for an astronaut orbiting around a Schwazschild black
hole is slower than that on Earth [12]. In this study, we will be studying the passage of time
around a rotating black hole.

The Kerr solution of black hole is obtained by solving Einstein’s Field Equation(EFE)[1], it is also
the generalization of the Schwaszchild solution. As Einstein’s Field equations are highly
non-linear[13], it is difficult to obtain a direct solution of it. The difficulty of obtaining the Kerr
solution is more than that of obtaining the Schwaszchild solution. In this paper, we will be
showing a trick method to obtain the Kerr solution using the already-known Schwaszchild
solution, the method is called the Newman Janis Algorithm.

The Newman Janis algorithm[14] comprises of four steps, the steps are as follows: The first step
is the transformation from spherical to a null coordinate {u, r, 𝜃, 𝜙}, the second step is to find a
null tetrad for the inverse matrix in the null coordinates. The third step is to do a complex
transformation in the r-u plane and the last step is the transform of the coordinate into
Boyer-Lindquist form.

The line element of the Schwaszchild solution is:

. . . (3)𝑑𝑠2 =  − (1 −  
𝑟

𝑠

𝑟 )𝑑𝑡2 + (1 −  
𝑟

𝑠

𝑟 )−1𝑑𝑟2 + 𝑟2(𝑑θ2 + 𝑠𝑖𝑛2θ𝑑ϕ2)
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From Cosimo[14], after applying the four steps the final result is:

𝑑𝑠2 =  (1 −  2𝑀𝑟
Σ )𝑑𝑡2 + 4𝑎𝑀𝑟𝑠𝑖𝑛2θ

Σ 𝑑𝑡𝑑ϕ −  Σ
∆ 𝑑𝑟2 − Σ𝑑θ2 −

 𝑠𝑖𝑛2θ(𝑟2 + 𝑎2 + 2𝑎2𝑀𝑟𝑠𝑖𝑛2θ
Σ )𝑑θ2

. . . (4)

and . . . (5)Σ =  𝑟2 + 𝑎2𝑐𝑜𝑠2θ ∆ =  𝑟2 −  2𝑀𝑟 +  𝑎2 

Kerr metric for rotating black holes

4. Results

In the study of the Kerr metric, a solution to Einstein's field equations that describes the
geometry of spacetime around a rotating mass, the differential elements dr, dθ, and dϕ
represent infinitesimal changes in radial distance, polar angle, and azimuthal angle,
respectively. Setting these spatial differentials to zero simplifies the metric to analyse scenarios
where an observer is fixed in space relative to the rotating mass. This condition focuses on the
temporal aspect of spacetime, allowing the evaluation of time dilation effects near a rotating
black hole without the complications of spatial movement.The Kerr metric, becomes:

… (6)𝑑𝑠2 = (1 − 𝑟
𝑠
𝑟/Σ)𝑑𝑡2

under these conditions, where Σ is defined as and encapsulates the effects of the𝑟2 + 𝑎2𝑐𝑜𝑠2θ
black hole's angular momentum per unit mass (a). This specific framework is crucial for
analysing how the interplay between the gravitational field and the rotation of the black hole
affects the passage of time for a stationary observer at a constant radius and angular position.
The result is a cornerstone for understanding the experiential differences in time passage in the
strong-field regime of gravity, highlighting the profound effects predicted by general relativity.
One can identify the time dilation factor from equation 6 as :

. . . (7)τ =  (1 −  𝑟
𝑠
𝑟/Σ)1/2𝑡

. . . (8)τ =  (1 −  (𝑟
𝑠
𝑟/𝑟2 + 𝑎2𝑐𝑜𝑠2θ))1/2𝑡
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Where, and is the flow of time in the astronauts and Earth's frame of reference. Fromτ 𝑡
equation 8, the time dilation depends on the position of the astronauts from the centre of the
black hole as well as the angular position with respect to the spin direction of the black hole.

Within the framework of general relativity, the Schwarzschild solution delineates a scenario
where time dilation is solely a function of radial distance from a non-rotating spherical mass. In
stark contrast, the Kerr solution, applicable to rotating black holes, introduces a more complex
dependency: time dilation becomes a function of both the observer’s angular displacement and
the intrinsic rotation of the black hole. This intricate relationship arises from the drag of
spacetime engendered by the black hole’s rotation, an effect absent in the Schwarzschild
geometry. In the investigation of time dilation within the context of a rotating gravitational field,
the time dilation factor is a critical metric that is influenced by three parameters: radial distance
r, the spin parameter a, and the polar angle θ. The radial distance r is normalised by the
Schwarzschild radius rs , which is the radius of the event horizon of a non-rotating black hole.
The spin parameter a represents the specific angular momentum of the rotating mass,
normalised by its mass and the speed of light, encapsulating the effects of rotation on
spacetime. The polar angle θ, measured from the object's rotation axis, introduces an anisotropy
to the time dilation factor, reflecting the non-spherical symmetry of the spacetime around a
rotating mass.

To analyse the time flow for the astronaut around the black hole we will plot and analyse the
time dilation factor. Below are the steps taken to obtain the plots:

1. Considering the spin of the black hole to be a = 0.1, 0.5 and 0.7. For each of these spin
values, the radial position and angular displacement are varied.

2. The angular position is taken as 0, 45 and 90 degrees.θ
3. The r/rs is taken to be from 1.01 to 1.1.

The below code is a sample code to generate the plots

Code 1: Plot for a = 0.1

Import numpy as np
Import matplotlib.pyplot as plt.

rs = 2 # radius of black hole in natural unit
def tau(r, a, theta):
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t = np.sqrt(1 - ((r/rs)/((r/rs**2) + (a/rs)**2*np.cos(theta **2))
return t

r_range = np.arange(2.02, 2.22, 0.02)
r_rs = np.range(1.01, 1.11, 0.01)

tau0 = []
tau1 = []
for i in r_range:
tau0. append(tau(i, 0.1, 0))
tau1.append(tau(i, 0.1, 90))

plt.scatter(r_rs, tau0, s=5, c=’black’, label=’0 degree’)
plt.scatter(r_rs, tau1, s=5, c =’blue’, label= ‘90 degree’)
plt.xticks([1.0, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10])
plt.xlabel(“r/rs”)
plt.ylabel(“Time Dilation Factor”)
plt.title(for spin parameter a= 0.1”)
plt.legend()
plt.show()

Figure 1: Time dilation factor for spin parameter 0.1
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From figure 1 is the plot of time dilation factor for spin parameter 0.1. The radial position is
varied from r/rs 1.01 to 1.10 for two different angular positions 0 and 90 degree w.r.t the spinning
direction of the black hole.

Figure 2: Time dilation factor for spin parameter 0.5

From figure 2 is the plot of time dilation factor for spin parameter 0.5. The radial position is
varied from r/rs 1.01 to 1.10 for two different angular positions 0 45 and 90 degree w.r.t the
spinning direction of the black hole.
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Figure 3: Time dilation factor for spin parameter 0.9

From figure 2 is the plot of time dilation factor for spin parameter 0.5. The radial position is
varied from r/rs 1.01 to 1.10 for two different angular positions 0 45 and 90 degree w.r.t the
spinning direction of the black hole.

The resulting plots provide a comparative perspective on how time dilation varies not only with
proximity to the gravitational source but also with its rotational dynamics. This comparative study
yields significant insights into the relativistic effects near rotating celestial bodies and serves to
augment our understanding of time dilation in such extreme environments.

5. Conclusion

Upon analyzing the visual data, a clear distinction emerged in the behavior of the time dilation
factor relative to the spin parameter a. For modest spin parameters, as exemplified by a = 0.1,
the resultant graph(figure 1) showcased a minimal variation in the time dilation factor with
changes in the polar angle θ. This was evidenced by the proximity of the plotted curves for
different θ values, suggesting a weaker dependence on the polar angle in spacetimes with slight
rotational influence.

Conversely, as the spin parameter increased, the dependency of the time dilation factor on θ
became significantly pronounced. This was particularly evident at higher values of a, where the
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graphical representation revealed a marked divergence between the curves corresponding to
different θ values. Thus the flow of time for the astronaut orbiting around the Kerr black hole
depends on three parameters, radial distance, angular displacement and the spin parameter.
From the figure 1, 2, and 3 we can conclude that the passage of time for the astronaut orbiting
around the black hole is the slowest when the black hole has a higher spin value, the astronaut
is closer to the black hole and the spinning direction.

6. Future Scope

In future scope, this research can be extended to study the time dilation factor for a rotating
charged black hole, known as the Kerr-Newman black hole[15]. This exploration would integrate
the effects of charge into the already complex interplay of mass and spin in the Kerr metric.
Analysing how the presence of an electric charge influences time dilation in the vicinity of such a
black hole could provide deeper insights into the nature of spacetime under these extreme
conditions.
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